수학에서 치환(쌤들 많이 봐주세요ㅜㅜ)
아까 현우진t 강의듣다가 극대,극소에서 치환에 대한 이야기가 나와서 갑자기 생각이 들었는데, 이제까지 문제풀때 그냥 아무 생각없이 치환해서 문제를 풀었었는데(지수로그나 삼각함수 문제 등등등) 생각해 보니깐 치환을 해서 치환된 식을 풀어서 답을 구하면 그게 원래 식으로 문제를 풀었을 때의 결과와 정확이 동일하다는 보장이 있을까?? 라는 생각이 갑자기 들어서요.. 혼자 막 생각을 해봤는데 도저히 모르겠네요ㅜㅜ 치환하는 의미와 치환했을 때 결과가 보장되는 이유 아시는 분 댓글이나 쪽지 주시면 정말정말 감사하겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
치환은 복잡한 식의 연산을 단순화 시키기 위한 도구이고 변역에 따라 같은 결과가 보장될 수도 있고 아닐수도 있습니다
그럼 치환을 막하면 안되는건가요??
변역을 정확히 알면 상관없죠~
그런데 치환을 하면 전혀 다른함수가 나오는데 그 함수로 계산한 결과랑 원래함수로 계산한 결과가 같은지 어떻게 알수잇는거죠??
합성함수에서 치역이 다시 정의역이 되는 원리와 같습니다.
어렴풋이 이해되네요ㅜㅜ 설명감사합니다
극대 극소 찾을때는 치환 안하는게 좋아요
치환했을때 범위가 극점에 딱 걸려버리면 이게 극점인지 아닌지를 확인할 방법이 없어요
정의역만 잘 확인한다면 ㄱㅊ. 근데 삼각함수 치환은 위험함
왜요??
예를 들면 sinx를 t값으로 치환한다 치면 t를 만족하는 x값이 유일하지 않을 수 있기 때문에 실수가 나올수 있음. 말로하기 좀 어렵네요;
그럼 치환적분에서 치환하는 함수가 적분구간 내에서 일대일 대응이어야 치환이 가능한 건가요??