2월 22일(수) (문항 변형)
*단원: 미분법, 미분법의 활용(이과 전용)
*예상정답률: 40%
*정답은 비밀글로 부탁드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오르비 씹년들아 5
딴년들이 질문하면 잘만 답해주면서 나는 왜 안해주는데
-
북한 지지한다고 안나올거같다던데
-
둘이서 서로를 형이라고 부르는건... 뭐임? 진짜 brother이 아니라 ~~씨 같은 건가..?
-
1. 종소리 표준 시계에 정확히 1초 단위까지 같길 2. 영어 듣기 시간에 뒷문제...
-
최저땜에 물지 3등급이 목표인데 뭘 하면 좋을까요?? 그냥 기출이랑 개념 더 공부할까요??
-
ㅋㅋ
-
중학교 단어부터 외우고 오면 되겠습니까
-
금방 지나가는거 아시죠 그니깐 현역재수생기말준비하는학생들 모두 힘내세요
-
하니무섭다 5
-
ㅇㅂㄱ 0
ㅇ
-
찍맞0 실수0 2
-
미취겟네 4
-
못하나요? 온라인 주문은 너무 늦어서 ㅜㅜ
-
얼버기 ㅡ
-
어 또 이겼어 1
원정고자 꼬마가 달라졌어요
-
얼버기록 1일차 3
다들 수능 얼마 안남았는데 화이팅 하시길 11/11 (월)
-
80점대 중반 진동하는데 59점 뜸
-
오히려 마지막 주에 게임해서 긴장을 안 했음 그래서 막 수능 당일날 집에 수험표...
-
이감6-10 2
연계랑 기출 봐야돼서 시간 많이 없는데 그냥 시간 안재고 푸는 거 괜찮나요?
-
다 왔다 이제
-
9평 성적표 보고 뽕채우고 출발
-
그거 하려면 omr로 시험지를 거의 안가려야 하는거 아님? 그냥 모른척 가로로...
-
늦버기 2
끄아아 오늘두 힘내보아요
-
싹다 버려야되냐 1
독재슬슬 책 정리해야하는데 시대컨들 새책이랑 실모들 ㅈㄴ쌓여있음 당근할까???? ㅜㅜ 아깝다
-
시계 세워놓잖음 보통 근데 이거 청테이프로 고정시켜도됨? 종이로 쳐서 떨어뜨릴까봐...
-
D-3 계획 0
국어 상상 5-10 고전시가 5작품 수학 샤인미 3 킬캠 2-4 영어 마피 2-3...
-
ㅠ….며칠전까진 근자감 맥스였는데 ㅈㄴ착잡함 다들 오늘도 ㅎㅇㅌ
-
그 대신 잠이라도 야무지게 잠 가볼까
-
이시점에 5
요즘 뭐하면서 살어? 공부말고
-
ㅎㅇ 3
ㅎㅇ
-
ㅈㄴ 무거운 무언가에 짓눌려 있는 느낌 머리가 굳은거 같고 숨이 턱턱 막히는데
-
나힐순tv
-
이제는 수능 끝나고 돌아오겠습니다. 모두 원하는 대학 가길 바랍니다. 화이팅해보구요
-
오뿌이 기상 7
잘잣다
-
실상은 혜택이 아닌데 혜택이라고 강조해놓고 비싸게 돈받고 판거 좀 역겹네
-
국어랑 타임어택심한 탐구는 끝까지 푸는게 낫지않음? 수학 영어는 쓰되 국어...
-
아아아악
-
컨텐츠가 남네 2
흠 .. 쩔수있나
-
헷갈리는 선지 2개 남아서 시험 끝날때까지 뭐찍지 간보다가 종치는 동시에 소리에...
-
나: 아;; ㅎㅎ 대학은 아니고...네....ㅎㅎ 이웃집 아저씨: 아~........
-
몰라 어케든 되겠지
-
끔찍한 악몽이군….
-
수능 D-3…문제·답안지, 경찰 경호 속에 85개 시험지구에 배부 7
(세종=연합뉴스) 김수현 기자 = 교육부는 11일부터 13일까지 2025학년도...
-
laundry sanitizer 써요 섬유유연제 대신 써도 되고 같이 써도 돼요...
-
얼리버드수면 2
10시에일어나기
-
대학교에 다닐때가 정말 행복한 것이었다는 사실을 사회에 나가면 깨닫게 됩니다...
-
베카리아 1
종신노역형은 형벌을 받는 범죄자보다 구경하는 시민들에게 더 큰 공포를 느끼게한다...
-
☆대성 19패스 phil0413 추천해주시면 감사하겠습니다. 서로 1만원권 받게요^-^ 0
추천 아이디 입력하면 메가커피 1만원권 같이 받을 수 있대요 !! 대성패스와 함께...
엌ㅋㅋㅋ 오늘문제는 어려워서 그런가 댓글이 업네요 ㅋㅋ 풀어볼게요 ㅋㅋ 근데 얼핏보기에 x>0이기때문에 f(x)를 x>0인 구간에서 정의해 줘야되지 않나여?
흠... 그럴 것 같네요ㅎㅎ
f(x)가 x>0인 구간에서만 정의되긴 하지만, 그냥 함수가 사용되었다는 것 자체가 정의역에서만 성립됨을 전제했는데
그냥 표기해주는게 더 나을 것 같네요ㅎㅎ
오늘문제는 망...ㅜ 꼭 좀 풀어주세요ㅜ
5번맞나요 ?
질문잇는데요
f(x)를 적분하면 ln l f(x)l = 어쩌구 저쩌구 나오자나요
근데 (나) 의 조건으로 절댓값이 풀어지는건가요?
네ㅎㅎ 일단 절댓값은 풀지 않은 채로 두는데요, 절댓값 내부의 부호와 관계없이 x=1에서 극값을 갖습니다
그게 극댓값인지 극솟값인지는 부호를 결정해야 알 수 있는데, (나)조건에서 f(x)가 최솟값을 갖는다고 하였으므로 부호가 결정됩니다
부호가 반대인 경우는 최솟값이 존재하지 않고, 대신에 최댓값만 존재하죠...
그리고 답은 맞히셨어요ㅎㅎ
5번요 ㅋㅋ f(x) = -e^( -1/2(lnx)^2 +1) 이 나오네요 흠 그런데 x>0에서 정의된 함수 f(x)라고 해줘야 될거같아요 그리고 음... 뭔가 생뚱맞다면 ㄱ은 f(x)를 구해야만 풀수있는데 ㄴ,ㄷ은 그냥 좀 허무하게 풀린느낌?
네 정답입니다ㅎㅎ ㄴ,ㄷ에서 이계도함수를 직접 구하지 않고도 해결하는것을 의도했는데, 그냥 이계도함수를 구해버리면 끝이라 좀 아쉽긴 합니다...
5번요
정답!
문항의 의도를 선명히 하면서, 난도를 낮추기 위하여 구성을 조금 바꾸어보았습니다
풀이를 포기하셨거나, 또는 이미 푸셨던 분들 중 관심있으신분들은 재도전... 해주세요ㅜ
4번
정답ㅋㅋ
님 포만한 안하세요>?
아 저 네이버 아디가 없어서 가입을 못하고 있어요ㅜ 폰도 없어서 네이버 가입도 안되고...;;
3번!!!
제발.... 오래 걸려서 푼건데 맞기를. .
아닙니다ㅜ
2가지 의문점을 답과 함께 드립니다. ㅠ.ㅠ
1. lnxf(x)라고 할 때 이걸 ln {xf(x)}로 오해할 소지가 있기 때문에 f(x)lnx로 표시해야하지 않을까요?
아니면 오해한 제가 아직 수리적 소양이 부족한 건가요.. ㅠ_ㅠ
2. 저로서는 ㄴ보기가 참인지 거짓인지 알 수 없다고 생각했습니다. 제 생각이 틀린 것인가요?
아니면 참인지 거짓인지 알 수 없기 때문에 답에서 제외하는 게 옳은건가요?
제가 구한 답은 4번 ㄱ, ㄷ입니다.. 정답 여부에 관계없이 풀이 달아주시면 감사하겠습니다.
1. 네 타당한 지적이네요ㅎㅎ 그렇게 수정하도록 하겠습니다
2. ㄴ은 f(x)lnx+xf '(x)=0의 양 변을 미분한 후, e를 대입합니다...(1)
또, f(x)lnx+xf '(x)=0에 e를 대입합니다...(2)
이제 (2)를 (1)과 연립하면 아실 수 있을겁니다ㅎㅎ
그리고 정답은 4번이 맞습니다ㅎㅎ ㄱ을 이용하여 f ''(1)>0이고 ㄴ에서 f''(e)<0이므로 중간값 정리에 의해 (1,e)에서 변곡점이 되도록
하는 x좌표가 존재합니다
음.. 2번이 잘 이해가 되지 않아서 그러는데요 ㅠ;
(1)식은 f(e)/e+f '(e)+f '(e)+ef ''(e)=0이 되고
(2)식은 f(e)+ef '(e)=0이 됩니다. (2)번식의 양변을 e로 나눈 뒤 (1)과 연립하면
f '(e)+ef ''(e)=0이 되는데.. 음.. 여기서.. 어떻게 ㄴ보기가 맞다는 걸 알 수 있죠? ㅠ.ㅠ
또 이해가 안되는 부분은 ㄱ에서부터 f ''(1)>0을 도출해내는 부분인데요,
전 단지 ㄱ에서 이끌어 낼 수 있는 것은 f(1)f ''(1)<0이라는 사실밖에 없다고 생각했거든요;
마찬가지로 (1)식과 (2)식을 연립한 식에서도 이끌어낼 수 있는건
f(e)f '(e)<0, f '(e)f ''(e)<0밖에 없다고 생각했습니당 ㅠㅠ 좀 더 자세한 해설 부탁드려요 ..
함수 f(x)의 절댓값은 e^( -1/2(lnx)^2 +C) 가 나오는데,
f(x)가 e^( -1/2(lnx)^2 +C)인지, 아니면 -e^( -1/2(lnx)^2 +C)인지의 여부는
문제에 '극솟값이 존재한다'라는 조건에 의하여 결정할 수 있습니다
e^( -1/2(lnx)^2 +C)와 -e^( -1/2(lnx)^2 +C)를 각각 미분해보면 공통적으로 x=1에서 극값을 갖는데,
e^( -1/2(lnx)^2 +C)는 그 중에서도 극댓값에 해당하고 극솟값은 존재하지 않습니다
항상 0보다 큰 값을 갖는데, x=1에서 점점 멀어질수록 0에 가까워질 뿐이죠...
반대로 -e^( -1/2(lnx)^2 +C)는 x=1에서 극솟값을 갖고 극댓값은 존재하지 않습니다
항상 0보다 작은 값을 갖으면서 x=1에서 점점 멀어질수록 0에 가까워질 뿐이기 때문이죠...
이제 f(x)= -e^( -1/2(lnx)^2 +C)의 형태라는것을 토대로, f '(1)=0, f(1)<0임을 알아낼 수 있습니다
따라서 ㄱ의 f(1)+f ''(1)=0을 이용하면 f ''(1)>0이 됩니다
ㄴ은 f '(e)+ef ''(e)=0까지 하셨으면 다 된거에요... f ''(e)=-f '(e)/e인데, f '(e)>0이므로 f ' '(e)<0입니다
(f '(e)>0이라는 사실은 f(x)가 x=1에서 극솟값을 가지고, 1보다 큰 구간에서는 증가하므로 알 수 있죠)
따라서 ㄷ은 함수 f ''(x)의 중간값 정리를 이용하면 맞다는 사실도 알 수 있구요...
답은 1번이가요 ㅠㅠ ㄷ정확히 어케풀죠>? 어렵네요 ....
함수 f(x)의 절댓값은 e^( -1/2(lnx)^2 +C) 가 나오는데,
f(x)가 e^( -1/2(lnx)^2 +C)인지, 아니면 -e^( -1/2(lnx)^2 +C)인지의 여부는
문제에 '극솟값이 존재한다'라는 조건에 의하여 결정할 수 있습니다
e^( -1/2(lnx)^2 +C)와 -e^( -1/2(lnx)^2 +C)를 각각 미분해보면 공통적으로 x=1에서 극값을 갖는데,
e^( -1/2(lnx)^2 +C)는 그 중에서도 극댓값에 해당하고 극솟값은 존재하지 않습니다
항상 0보다 큰 값을 갖는데, x=1에서 점점 멀어질수록 0에 가까워질 뿐이죠...
반대로 -e^( -1/2(lnx)^2 +C)는 x=1에서 극솟값을 갖고 극댓값은 존재하지 않습니다
항상 0보다 작은 값을 갖으면서 x=1에서 점점 멀어질수록 0에 가까워질 뿐이기 때문이죠...
이제 f(x)= -e^( -1/2(lnx)^2 +C)의 형태라는것을 토대로, f '(1)=0, f(1)<0임을 알아낼 수 있습니다
ㄱ을 해결하기 위해 문제의 조건에 주어진 식 f(x)lnx+xf '(x)=0의 양 변을 미분하여 x=1을 대입하면
f(1)+f '(1)+f ''(1)=0이 나올겁니다 여기서 f '(1)=0이므로 f(1)+f ''(1)=0입니다
ㄴ은 f(x)lnx+xf '(x)=0의 양 변을 미분한 후, e를 대입합니다...(1)
또, f(x)lnx+xf '(x)=0에 e를 대입합니다...(2)
1)식은 f(e)/e+f '(e)+f '(e)+ef ''(e)=0이 되고
(2)식은 f(e)+ef '(e)=0이 됩니다.
(2)번식의 양변을 e로 나눈 뒤 (1)과 연립하면 f '(e)+ef ''(e)=0이 되면서
f ''(e)=-f '(e)/e인데, f '(e)>0이므로 f ' '(e)<0입니다
(f '(e)>0이라는 사실은 f(x)가 x=1에서 극솟값을 가지고, 1보다 큰 구간에서는 증가하므로 알 수 있죠)
ㄷ은 함수 f ''(x)의 중간값 정리를 이용하면 되는데요
ㄱ의 f(1)+f ''(1)=0을 이용하면 f ''(1)>0이 됩니다
또 ㄴ에서 f ''(e)<0임을 알았으므로 ㄷ은 바로 아실 수 있을겁니다
에프엑스를 직접구할수 있었군요.... 다 쓰느라 수고하셨어요 감사합니다^^
으ㅏ..
ㄴㄷ는 f''(1)이랑 f''(e) 부호로 중간값의 정리 쓰는거 맞죠?
근데 정작 부호 판별을 못하겠어요.. 어떻게하죠? ㅠㅠ
함수 f(x)의 절댓값은 e^( -1/2(lnx)^2 +C) 가 나오는데,
f(x)가 e^( -1/2(lnx)^2 +C)인지, 아니면 -e^( -1/2(lnx)^2 +C)인지의 여부는
문제에 '극솟값이 존재한다'라는 조건에 의하여 결정할 수 있습니다
e^( -1/2(lnx)^2 +C)와 -e^( -1/2(lnx)^2 +C)를 각각 미분해보면 공통적으로 x=1에서 극값을 갖는데,
e^( -1/2(lnx)^2 +C)는 그 중에서도 극댓값에 해당하고 극솟값은 존재하지 않습니다
항상 0보다 큰 값을 갖는데, x=1에서 점점 멀어질수록 0에 가까워질 뿐이죠...
반대로 -e^( -1/2(lnx)^2 +C)는 x=1에서 극솟값을 갖고 극댓값은 존재하지 않습니다
항상 0보다 작은 값을 갖으면서 x=1에서 점점 멀어질수록 0에 가까워질 뿐이기 때문이죠...
이제 f(x)= -e^( -1/2(lnx)^2 +C)의 형태라는것을 토대로, f '(1)=0, f(1)<0임을 알아낼 수 있습니다
ㄱ을 해결하기 위해 문제의 조건에 주어진 식 f(x)lnx+xf '(x)=0의 양 변을 미분하여 x=1을 대입하면
f(1)+f '(1)+f ''(1)=0이 나올겁니다 여기서 f '(1)=0이므로 f(1)+f ''(1)=0입니다
ㄴ은 f(x)lnx+xf '(x)=0의 양 변을 미분한 후, e를 대입합니다...(1)
또, f(x)lnx+xf '(x)=0에 e를 대입합니다...(2)
1)식은 f(e)/e+f '(e)+f '(e)+ef ''(e)=0이 되고
(2)식은 f(e)+ef '(e)=0이 됩니다.
(2)번식의 양변을 e로 나눈 뒤 (1)과 연립하면 f '(e)+ef ''(e)=0이 되면서
f ''(e)=-f '(e)/e인데, f '(e)>0이므로 f ' '(e)<0입니다
(f '(e)>0이라는 사실은 f(x)가 x=1에서 극솟값을 가지고, 1보다 큰 구간에서는 증가하므로 알 수 있죠)
ㄷ은 함수 f ''(x)의 중간값 정리를 이용하면 되는데요
ㄱ의 f(1)+f ''(1)=0을 이용하면 f ''(1)>0이 됩니다
또 ㄴ에서 f ''(e)<0임을 알았으므로 ㄷ은 바로 아실 수 있을겁니다
4번인가요??.. x<1 x=1 x>1 로나눠서 극솟값가진다해서 f(x)는 무조건음수 f'(x)는 x<1에선 음수 x=1에서 0 x>1에선 양수 이렇게두고풀고 개형대충그렸는데.... 정확학 출제자의의도와 풀이좀 가르쳐주십시오..... 늦게 보게되 죄송합니다..ㅠ
답 ㄱ?
f(x)를 구해버렷는데 구한게 맞나. .
4번?/ 풀이과정이 궁금하네요./
f(x)는 이계미분가능하다는 조건과 함수f(x)는 오로지 극솟값 1개만 존재한다는 조건이 있어야되는것 아닌가요? ㅋ 답 4번인가요??