(안녕맨)<화요 수학칼럼 - 적분이란? >
1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
9. 정적분의 동치 변형 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8742407&showAll=true
10. 외워두면 좋은 면적 공식 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8759526&showAll=true
11. 2차 곡선에서 접선의 방정식 공식화 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8766382&showAll=true
12. 미분이란? : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8776957&showAll=true
cf) <8월 1일 대치동 오르비 학원 개강 안내>
8월 1일 (다다음주 월요일)부터 월수금 8주 커리로 안녕맨의 끝장인강 총정리 & 안녕맨의 손으로 만든 2017 기출시험지 10회 자기시험지 만들기 현강이 시작합니다
관리자님 말씀으로는 오르비 역대 최고의 시설이라고 하네요 (완전 모던하게 꾸몄대요 ㅎ)
학원 위치는 대치동 은마아파트 입구 사거리 교차로 근교 메인대로변에 있습니다
(교차로에서 대치사거리 쪽으로 걸어서 3분거리 ) 주소는 대치동 931-22
시간은 문과 6시~8시 // 이과 8시~10시 구요 한시간은 끝장인강 잠시 휴식후 나머지 한시간은
기출시험지 풀이 하는 수업을 하게 됩니다
8월 1일 첫수업은 무료 강의 인데 그날 오시는분들은 반드시 안녕맨의 손으로 만든 2017 대 수능대비 기출시험지 1회를 풀고 오셔야 합니다 (이과는 http://class.orbi.kr/class/776/ ,
문과는 http://class.orbi.kr/class/777/ 여기서 자료 다운 받으시고 진행하시면 됩니다)
당일 수업 교재는 임시로 대여 해 드립니다(물론 수강 등록을 하시면 무료로 드립니다)
참고로 무료 개강 수업 후 조 추첨해서(네이버 사다리를 돌릴거에요) 문이과 각각 한분씩
컬쳐랜드 문화상품권 1만원권 1매를 선물로 드릴거에요 ㅎ
자세한 정보는 http://class.orbi.kr/group/85/ 여기서 확인하시면 됩니다
아무쪼록 많이 참석해 주셨으면 하는 바램입니다 감사합니다 꾸벅~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
쿠팡.. 시간빨리갔으면좋게ㅛ다..
-
얼버기 0
암튼 기상임 암튼그럼 씻고잇올감
-
엄마한테 재수할동안 교정이나해달라고할까
-
잘자 3
바이
-
개꿀잼메타돌앗나보네
-
대답.
-
등장 1
-
나랑놀자
-
그의 유지를 잇기로 했어요 그래서 이름을 바꿈 앞으로 전 개쩌는 아카네 리제입니다
-
안지는 사람? 6
일어난 사람을 찾아야 하나?
-
확백하고싶다
-
나 아직 안잔다 1
그냥 그렇다고
-
26명 모집 92명 지원 점공 29/42 허허...
-
진짜 잠.... 2
에효이....한명이 갔네.....
-
나군 외대 LD 쓰려다 카드 결제 오류로 원서 못 써서 울며 겨자먹기로 성대 썼는데...
-
저 사실 적백 6
내전
-
387은 짜피 써도 가망없엇겟져?
-
한명 가니까 또 가려하네....나도 갈까
-
너무적적해여 0
-
저도 걍 갈께요 6
ㅂㅂ
-
ㅈ됐다 뭔 6시 1
시잘 언제자노
-
원래 그냥 깨어있는 김에 오르비를 했는데 오늘은 뭔가 작년느낌이.. 오르비 재밌어서...
-
자다가 후다닥 왔습니다... 조의를 표해주십시오...
-
크아악 7
숙취 으아아
-
왜 지거국 토목 썼지 ㅆㅂ
-
꼭 합격하고 싶은 1지망 학교라서 그런데 발뻗잠 해도 되겠죠..? 점공한 사람...
-
돌아줬으면 좋겠다 ㅎㅎ
-
운동간다 1
-
메뉴는 아라비아딱 파스타임
-
ㅂㅂ 11
-
나도 잔다 4
Good Night
-
얼마나 하심? 사실 남자들 친해지는데에 운동 게임만한게 없긴한데
-
진짜 잔다 0
이제 4시간 자도 지각이다 ㅂㅂ
-
무휴반을 해야하나..아님 6월 공군가서 해야하나 고민이다
-
아주대vs과기대 2
둘다 붙을거같은데 어디가야됨?? 전에 한번 올리긴했는데 마지막으로
-
콩나물없어서 아쉽
-
지방 6등급대 사립대 인문->지거국 공대 왜 인서울 못함 ㅆㅃ이
-
뭘 올려도 어떻게든 맞히는 사람이 반드시 나온다.. 분명 나는 그게 어딘데 십덕아...
-
진지하게 내식이라 수능 끝나서 그이를 못보는게 가슴이 찢어짐
-
오르비를 발바닥공화국으로 만들려했다가 메인 가자마자 블라먹고 관리자한테 혼남...
-
질문안해주면 엉덩이 만짐
-
동갑한테 선생님 소리 들을 수 있음
-
잘 자 8
형은 롤 하러갈게 곧 휴면임
-
그건 메가커피 호랑이 선생님의 감각적 직관 풀이를 비판했던 글입니다 블라글은 안...
-
ㅜㅜ
-
없으면 영단어 외우러 가야겟다
-
학교다니면서 가장 기억에 남는 흑역사 얘기하기 콘테스트 시작 9
중딩때 너무 급한데 대변기 다 잠겨있어서 소변기에 똥싸다가 선생님한테 걸림
-
신해혁명 기념해서 공화국의 봄이라는 뜻으로 지었었대
안녕맨님 궁금한게있는데
함수 f a부터 b까지 의넓이가 왜 f를적분한 함수의
함숫값의 차로 구할수있나요?
예를들면 일차함수의 면적을구하는데 이차함수의
함숫값의 차가 일차한수의 면적이되는게 신기해요
일차함수의 함수값은 길이구요 면적은 길이를 두번곱해서 구해요 길이가 1차면 면적은 길이의 제곱이니깐 2차가 되요
이해가 잘않되요
자세히 설명 드릴게요
인테그랄은 원래 무한급수죠 연속된 무한개의 값을 더할때 쓰는거구요
우선 구분구적을 이해할때 길이가 합해서 면적이 되는게 절대 아닙니다
즉 f(x)를 더해서 면적을 만드는게 아니라 아주 얇은 직사각형을 무한개 더해
서 면적을 구한다고 생각하시면 되요
이때 세로에 해당되는게 f(x)구요 아주 작은 가로에 해당되는게 dx 입니
다 직사각형은 가로와 세로를 곱하는데
여기서 가로에 해당되는 dx가 x에 관한 1차식이라고 생각하시면
실제 면적을 구할때는 f(x)보다 한차수가 높아지죠 (적분하게 되면 차수
가 한차수 높아집니다) 그래서 면적이 그렇게 되요
그니깐 함수값이 1차이면 면적은 2차식이 되고
함수값이 2차이면 면적은 3차
즉, 함수값보다 차수가 한차수 높은 면적으로 나옵니다
서로 빼는거는 구분구적의 계산이 위의 칼럼대로 부정적분해서 양끝값더
한것의 차이라는게 증명됬기 때문에 그렇게 쓰는거구요
그거 교과서에 있어요
쉽게 생각하면 되요
F(x)라는것은 0부터 x 까지 f(x) 그래프 아래의 면적을 의미해요
그러니 a부터 b까지의 면적은 0부터 b까지의 면적에서 0부터 a까지의 면적을 빼면 되므로 F(b)-F(a) 가 되는거죠
대학 미적분학1에서 다루는 내용이군요
hello man(bjh)쌤 홧팅!!!! ^^
감쌈다 정답이오쌤님ㅎ
글씨옆에 잇던게 눈에익어서 봣더니 벤젠(C6H6)였어....
와..
미분은 그냥 괜찮네이랬는데
적분은 내가 강의할때 하는말 다담겨있네ㄷㄷ추천합니다 글 정말 잘읽었어요
감사합니다 ㅎ
공감 ㅋㅋㅋㅋ 과외준비할때 다른것도 읽어보구 참고해야겠어요 안녕맨쌤파이팅하세요!
네 약간이라도 도움이 됬으면 좋겠습니다ㅎ 감사합니다
인티그럴?
쌤 궁금한게 책에 나오지도 않았는데
어떻게 깊이있는 개념을 터득하신겁니까?ㅠ
완죤 부럽습니다.. 책에나온개념도
완전히 이해못하는디ㅠ
구지 말하자면 연륜이죠 ㅎ
제가 처음 과외했던 친구가 78년생 고3 3명이었어요 ㅎ
그 이후 5년정도 휘트니스센터할때 빼고는 수학을 놓은적이 없네요 ㅎ
구지--->굳이..ㅜㅜ
아 넵 ㅠㅠ
좋은 글 감사합니다 ㅎㅎ
.도움이 됬다니 다행이네요 ㅎ