(안녕맨)<토요 수학칼럼 - 외워두면 좋은 면적 공식>
1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
9. 정적분의 동치 변형 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8742407&showAll=true
cf) 8월 1일 부터 대치동 오르비 현강 개강합니다
끝장인강 총정리 & 수능대비 기출시험지 10회 8주 커리인데
제 현강의 특징은 필기가 전혀 필요 없습니다 모든 필기된 교재는 미리 제공합니다
http://class.orbi.kr/group/85/ 참고하세요
(첫 강좌는 무료입니다 시간되시는분들 오셔서 강의 들어보시고 등록 판단 하시면 됩니다
그리고 그날 오시는분 한명 추첨해서 컬쳐랜드 문화 상품권 1만원권 선물 드릴게요 ㅎ)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
3수해서 대학교 인싸로 살기 vs 현역으로 대학교 아싸로 살기 2
미필,칼졸업기준 똑같은 대학간다는 가정 (메디컬X)
-
너무적적해여 0
-
저도 걍 갈께요 6
ㅂㅂ
-
ㅈ됐다 뭔 6시 1
시잘 언제자노
-
원래 그냥 깨어있는 김에 오르비를 했는데 오늘은 뭔가 작년느낌이.. 오르비 재밌어서...
-
자다가 후다닥 왔습니다... 조의를 표해주십시오...
-
크아악 3
숙취 으아아
-
왜 지거국 토목 썼지 ㅆㅂ
-
꼭 합격하고 싶은 1지망 학교라서 그런데 발뻗잠 해도 되겠죠..? 점공한 사람...
-
돌아줬으면 좋겠다 ㅎㅎ
-
운동간다 1
-
메뉴는 아라비아딱 파스타임
-
ㅂㅂ 11
-
나도 잔다 4
Good Night
-
얼마나 하심? 사실 남자들 친해지는데에 운동 게임만한게 없긴한데
-
진짜 잔다 0
이제 4시간 자도 지각이다 ㅂㅂ
-
무휴반을 해야하나..아님 6월 공군가서 해야하나 고민이다
-
아주대vs과기대 2
둘다 붙을거같은데 어디가야됨?? 전에 한번 올리긴했는데 마지막으로
-
콩나물없어서 아쉽
-
지방 6등급대 사립대 인문->지거국 공대 왜 인서울 못함 ㅆㅃ이
-
뭘 올려도 어떻게든 맞히는 사람이 반드시 나온다.. 분명 나는 그게 어딘데 십덕아...
-
1지망 합격기원 5
그래야 올해 원서에 미련이 안남아..
-
진지하게 내식이라 수능 끝나서 그이를 못보는게 가슴이 찢어짐
-
오르비를 발바닥공화국으로 만들려했다가 메인 가자마자 블라먹고 관리자한테 혼남...
-
진짜.. 나 대학생 맞냐..
-
질문안해주면 엉덩이 만짐
-
모집합니다 잘 적어주시면 천덕
-
동갑한테 선생님 소리 들을 수 있음
-
잘 자 8
형은 롤 하러갈게 곧 휴면임
-
그건 메가커피 호랑이 선생님의 감각적 직관 풀이를 비판했던 글입니다 블라글은 안...
-
ㅜㅜ
-
없으면 영단어 외우러 가야겟다
-
학교다니면서 가장 기억에 남는 흑역사 얘기하기 콘테스트 시작 9
중딩때 너무 급한데 대변기 다 잠겨있어서 소변기에 똥싸다가 선생님한테 걸림
-
신해혁명 기념해서 공화국의 봄이라는 뜻으로 지었었대
-
번호를 내놔라 6
전화를 해주마
-
난 공용에서 코딱지 파먹는 사람 봄
-
대충 미즈키 짤
-
정수기가 없다는 사실이 나를 미치게함 냉라면 못먹겠네 쿠지라이식 라면이나 먹어야겠다...
-
자려고 누웠는데 잠이 안와서 가장 기억에 남는 글이랑 혜윰님 댓글 달린글 빼고 다...
-
고로 매우 마초적인 행위라고 할 수 있음
-
객관적으론 진짜 개빡센 문제일텐데 또 굇수가 오셔서 20초컷 하실 거 같음..
-
본계정에 여자 비키니사진 좋아요 수만개는 눌러둔거같은데 이거 언제지우냐 대학 가기전까지 지워야하는데
-
없으면 빛삭
-
과시는 결핍이다 5
과시하는 사람은 보통 어딘가에서 결핍이나 열등감을 느끼는 경우가 많았던 거 같음. 아님 말고
-
와 저건 진짜 심하다
-
타비비토노요오니 0
우타카라우타에
-
X카스 같은 매력이 있는듯 인증을 볼때마다 아 괜히봤네; 싶지만 쉽게 끊지 못하는...
-
강아지 잔다 3
기여워요
저거 외울시간에 잠자는게 이득
맞습니다 제목 그대로 필수가 아니라 "알아두면 좋은" 이에요
외우는 거 귀찮으면 이런게 있구나 하고 넘어가시면 되구요
근데 비슷한 부분이 많아서 외우는데 그리 어렵진 안을 거에요 ㅎ
현강에서 지도해보면 분모는 6 12 30 (6의 배수)이고 분자는 3승 4승 5승 순이라
금방 암기를 하더라고요
그리고 실제로 모평에서 나온적이 몇번있어서 알아두면 즉답으로 문제를 푸는경우가 많습니다
문과면 외워둬서 나쁠건없는데요 댓글이너무공격적 ㅋ ㅋ
현t도 챙겨가라하시고
감사합니다
하지만 평가는 주관적인거라 모든 분들의견 다 수렴합니다 ㅎ
그게 강사의 기본 자세구요
현우진 선생님도 저거 말해주시나요?? 빡쌤도 말해주셨던 걸로 기억하는데
수분감기벡 '이과'에서도 챙겨가라하세욥
'알아둬도 그냥그런'
무슨 말을 저런 식으로 하나....사회생활 힘들 듯..
저건 필수적으로 외워야 됨 ㅋㅋㅋㅋㅋ 한석원도 저거 기억해두라고 하고 자주나옴 저건
사회생활 가능하세요?
ㅋㅋ
공부하다보면 외워지는 거지요
당장 이번 7월 나형 30번도 3번 공식이 등장하니까요
좋네요
네 이번 칼럼이 그걸 중점으로 쓴거에요 ㅎ
공식이라는건 자주 나오고 쓰다보니깐 관용적인것을 정리한것이니깐요
저는 수학안하는 학생입니다
그래서 글이 좋은진 안좋은지는 모르겠지만 이런칼럼에 학생이 피해보는 일은 있을것같지는 않아보입니다
작년에 불미스러운일때문에 인식이 안좋으신건 알겠습니다. 저도 너무했다 생각은 들고요
근데 학생을 위해 칼럼쓰는글에 공격적인 댓글 (ㅋ , 믿고거릅니다 , 등등) 올라오고 그러는게 너무 빈번하게보이더군요
그런감정or인식으로 인해 보기싫으시면 거르면 될텐데 굳이 왜 글에 들어와서 그런글을 남기는지 모르겠네요
무슨 싸우고싶어서 안달이난 사람같아보여서
보기싫으면 보지마세요 그냥... 그런감정은 개인적으로 글을써서 표현하던가 칼럼에 댓글로 이게 뭡니까...
ㅋㅋㅋㅋㄹㅇ 애같애요
외우는게 쓸모없다니... 전 a(x-p)^m(x-q)^n 일반화해서 외우고 다니는데... 너무들 하시네요..
일반화까지 ㄷㄷ 일반화하면 뭐에여?
am!n!(p-q)^(m+n+1)/(m+n+1)!
이것말고도 일반화해서 외우면 꿀인게 꽤 있어요... 예를들면 cos합법칙?
cos(c)=cos(a)cos(b) + sin(a)sin(b)cos(r) 이렇게요
일반화는 오바인듯 전 많이쓰다가 자연럽게 외워졌는대
사관학교나 경찰대 문제 풀다보니까 많이 필요해서 그냥 외워버렸어요..
교주님이다
유용한 정보 감사합니다.
좋게 봐주셔서 감사요 ㅎ
저거 정말 개꿀입니다..... 왜 저런걸 거부하시는지... 미적분 할 때 저런거 진짜 개꿀인데
도움이 되셨다니 다행이네요 ㅎ
서울 의대간 형도 예전에 꿀팁이라고 알려줬던 건데 까먹고 잇엇던 마당에 감사합니다!
삼각함수도 넓이 알아두면 편한데...
선생님 좌표에서 평면넓이 구할때 신발끈공식에 대해 어떻게 생각하시나요??
필수죠 솔직히 좌표 알때 신발끈 공식이 최고에요 ㅎ
그거 삼각형만되는거죠?? 원점하나걸친
보통 삼각형에서 많이 쓰죠
특히 원점을 포함하면 (0, 0) , (a, b) , (c, d) 일때 1/2 | ad -bc |라는 공식으로 바로 구할수있어요
원점 아니라도 상관 없고, 임의의 다각형에 대해서도 성립합니다
네 맞습니다 ㅎ 참고로 시계 반대 방향으로 배열하면 항상 양의 값을 갖아서
구지 절대값을 할 필요가 없습니다
헐 그랬군요 무조건원점하나걸치고 삼각형만되는줄알았는데..
이미지세탁 ㄱㅇㄷ
솔직히 경우가 어떻든 학생들이랑 소통할때가 가장 기쁩니다
예전에 개인 카페 운영할때랑 수만휘 멘토에 있을때는 하루에 100개 넘는 댓글을 매일 하고 그랬는데
그때가 가장 행복했었네요 ㅎ ( 지금은 기력이 안됨 ㅠㅠ)
감사합니당
^_^ v
2,3,4공식도 필요한가요?? 1번공식은 알고있는데 234는 한완수에 나올법한 공식같아요
저만 모르고 있었던거는 아니죠??
말 그대로 "알면 좋은" 입니다
필수는 아닙니다
선생님
선생님 칼럼 편히 볼 수 있도록 링크 달아주셔서 너무 감사합니다
이렇게 칼럼 제목을 한꺼번에 보니 너무 좋아요
앞으로도 좋은 칼럼 부탁드립니다
전 선생님 강의 스타일 좋아합니다
실제로 확통 강의 재미있게 보기도 했구요
안녕맨선생님 파이팅 !!!
감사합니다 기분 짱이네요!!!
매번 도움되는 칼럼 올려주셔서 감사합니다 !
굳이 여기와서 시비터는 분들은 사회생활 어찌하실지 궁금하네요
감사합니다
저는 솔직히 다들 조카뻘 되는분들이라 그리 연연하지 않아요
그냥 갖고 노시다가 제 자리에만 놓으면 됩니다 ㅎㅎ