[수학칼럼] 부정적분에서의 극값
안녕하세요 저능부엉이입니다
오늘은 부정적분 파트에 대한 칼럼으로 찾아왔습니다
오늘 다뤄볼 주제는 부정적분에서의 극값입니다
부정적분에서 극값이라는 워딩이 나온다면
여러분이 해야할 행위는 99.99% 미분입니다
그럴때 우리는 다음과 같이 행동해야 합니다
1. 미분하기 (미분할 수 없다면 미분할 수 있게 만들자)
2. 극소,극대,극값은 도함수의 부호변화 유심히 관찰
예시 문항을 통해 설명하자면
230620 입니다
먼저 극값에 관한 워딩이 나온다면 공통영역에서는
필연적으로 미분을 할 수 밖에 없다는 것을 명심하세요
하지만 미적 선택자가 아니면 이대로 미분하기가
어려워 보입니다. 그렇다면 미분가능하게 만듭시다
미분이 이렇게 됐습니다
그렇면"g'(x) 의 부호가 1과 4에서 음에서 양으로 바뀐다"
이사실을 사용해야 겠습니다(극솟값이기 때문에)
|f(x+1)|-|f(x)|라는 함수를 그리기는 힘드니
|f(x)|에서 x좌표가 1차이나며 함수값이 같아지는 순간을
생각해봅시다
근데 지점이 총 3군대 나오는군요
하지만 우리에게 중요한것은 극솟값입니다
부호가 -에서 +으로 가는 순간이죠
따라서 |f(x+1)|가 |f(x)|보다 커지는 순간입니다
그렇기에 그림과 같이 x=1과 x=4인점을 찾을 수 있습니다
이후 대칭축이 3이고 f(1)=-f(2)인것을 이용해
계산을 끝내면 바로 답이 나옵니다
231112입니다
먼저 x=2에서 최솟값 0을 지닙답니다
따라서 2에서 극솟값이겠고 미분할 수 밖에 없습니다
우리는 그렇기에 두 가지 식을 얻을 수 있습니다
먼저 1번을 사용해 문제에서 주어진대로 그림을 그리면
이런식으로 나옵니다
(극솟값이기에 부호변화가 2에서 음-양으로 바뀌는게
포인트입니다)
이후 2번식을 사용하면
이런식으로 마무리되고 1/2에서 4까지 적분이기에
간단하게 정답 -1/2가 나옵니다
220620입니다
극값이라는 워딩이 나왔습니다
일단 미분해봅시다
다음과 같이 미분되었습니다
우리는 g'(x)의 부호변화가 단 한번 일어나도록
a값을 만들어야 합니다
일단 f(t)^4은 항상 0이상이기에 2번함수는
오직 a에서만 부호변화가 일어납니다
따라서 적분한 함수와 앞의 1번함수가 공통된 근을 가져서
그 근에서 x축과 접하도록 만들어야 할 것입니다
2번함수가 근을 갖는 지점은 x=a에서만
따라서 가능한 a값은 3,5 뿐입니다
오늘 칼럼의 핵심을 요약하자면
부정적분에서 극값내용이 나올경우 무조건 미분
극값은 도함수의 부호변화가 핵심
이 되겠습니다
사실 어느정도 수학을 하는 사람에게는 매우 쉬운 내용이기도 그럼에도 의외로 극값에서 도함수의 부호변화를 바로 연결 짓지 못하는 사람이 존재하다고 생각해서
행동강령적인 느낌으로 칼럼을 적어 봤습니다
들어주셔서 감사하고 좋아요는 제게 큰힘이 됩니다
다음에도 좋은 칼럼으로 돌아오겠습니다
[수학칼럼] 등차수열 정복하기 -
[수학칼럼] 정보의 용도 파악 -
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
노베이스 6
베이스가 없으면 굉장히 허전할 것 같군요 둥둥 사실 차이가 없다 이게 팩토~
-
다시 공부 시작 0
.
-
범작가 커리 6
재수 범작가 커리 탈려고 하는데 찾아보니까 디시 같은데는 불호가 너무 심하네요.. 실제로 별론가요?
-
살짝 솔깃했는데 오늘 하는 꼬라지보니까 난 통통이가 맞음
-
천만덕 가쥬아
-
진짜 미치도록 귀엽네 22
캬
-
오르비언이라는게 믿기지가 않음 여기서는 ㅇㅇ 맞음뇨 으흐흐 치킨이당 수학 ###...
-
피시방 정액제가 정확히 어떤 시스템인건가요?? 회원가입하고 몇시간 충전하는거랑은...
-
다른 기출보다 걍 안풀림ㅋㅋ lv1,lv2같은 나머지는 괜찮은데
-
이불 치울려고 발로 찼는데 안에 아이패드를 찬 건에 대하여.. 7
욕나오도록 아프군
-
스토리 올라가면 레전드이긴함
-
한국외대 합격생을 위한 노크선배 꿀팁 [외대25] [대학생활관련꿀팁] 0
대학커뮤니티 노크에서 선발한 한국외대 선배가 오르비에 있는 예비 한국외대학생,...
-
이원준 쌤 잘 그렸나용 15
-
전 화컴 기 신 산공 물리 화학 상경 수학 건도토 지천대 상경 외 문과 아 참고로...
-
https://youtu.be/wJa8Pj-0nx4?si=zhhgauD4w4ertfXx
-
넌 알고 있니 you know 우리가 만난 지 딱 1년째 날이야 그대를 처음 만날...
-
원래 도형 못하면 좀 어려운가요?
-
...
-
컨텐츠는 넘치고 남의 떡은 다 커보임… 떡 ㅗㅜㅑ 고고? 으흐흐
-
운동도 할 수 있는 드럼을 배우자 덩기덩 쿵 더러러럵
-
별 이유는 없고 그냥 갑자기 궁금해서..
-
그 바나나 그림자 지문 10
-
진짜 맛있노
-
새 학기까지 한 달 남았죠. 많은 사람들이 방학을 “역전의 기회”라고 합니다....
-
강기분이랑 시발점 하나씩 놓여져있는게 진짜 현역들한테 메가스터디 파워가 어마어마한듯
-
드디어 작동하네 3
전기랑 회전력을 동시에 먹는데 회전력을 물레방아로 하려니까 택도 없길래 결국...
-
너에게 줄 선물이 있는데
-
일단 학생은 고2고 내신준비용임 개념이랑 쏀 한바퀴 돌려놓고 기출 들어가려는데 고2...
-
사문 노베 2
인데 어느 강좌 들으면 좋을지 알려주실 수 있나여???
-
노트북 추천 좀 18
LG GRAM 5 or 삼성 갤북5 댓글에 이유도 달아주세용
-
아가야 아그야 아르르지닌 까꿍~! 유아인 유지태 씨유어게인~ 류신 아아 피 아파라...
-
급 졸리다 2
잘까
-
8녕하세요 3
네
-
내가 보카로 입문하던 때만 하더라도 400곡이 안 됐는데...그때는 전설입성 싹 다...
-
다시는 산화될순없음
-
큐브 7일차 8
사실 36건임 찜 좀 해달라고..
-
한 일주일 유기하니까 강기원 선과제 푸는데 잘 안풀림 ㅋㅋㅋ
-
졸업사진 찢어서 가끔씩 보고. . 걔생각 때문에 미치기도했었는데 내가 얘를...
-
44는 찐으로 지적 유희 아니냐 이걸 풀으라고?
-
흐음. . . . 짝사랑녀를 잊으라고 몸에서 반응하는건가. . .
-
에코 3성도 집행해봐.
-
제발 메가패스 수강생들이면 모두 강민chill 듣자 7
평소에는 국어 5등급에서 벗어나지 못하며 국평오라는 말 속에 갇혀 본인을 갉아먹고...
-
경한하고싶다 2
-
똥마려움 0
하지만이것은 카페인으로인한 가짜똥마려움임 참아야하느니라
-
다 뚫었을거야 음음
-
학교 고르다보니 별 생각을 다 하게되네.. 우리 세대까지는 괜찮을까요?
-
[2025년 2월 최신] 수학 모의고사 양식 및 제작하는 법 7
요즘 또 과외철이죠. 저도 물론 과외를 구했는데요. 수학 모의고사를 만들려고...
-
뉴런 공부 시기 0
시발점만 끝내고 바로 뉴런 수분감으로 넘어가도 되나요??
-
훈련소 이후로 총은 만져본 적도 없는데
왜 재업함?
중간에 인수분해 하나 잘못한거 있었음...
그래서 수정후 재업함
부정적분보단 긍정미분이죠
와 이사람 오랜만이네
지금쯤 뭐하고있을까
담달에 전역하심
흔히들 가르치지만 정말 중요한 태도
칼럼 잘 읽고 있어요
뻘글쓰는건 역시 다른 사람인거죠? ㅋㅋ
그래프간 부등호 대소 판별 유익 추 goat
이거 삭제 ㄴㄴ
첫?번째문제 아예 부정적분을 F(x)라 두고 미분해도 됩니당
근데 누가 봐도 고능부엉이신데 닉넴 좀 바꾸세요 ㅠㅠ
231112 에서 극솟값을 2에서 가지는 게 아니고 0에서 가지나요?
앗...오타
231112번을 저렇게 걍 풀어도 되는군요 ㄷㄷ
누구세요???!
세로드립임?
삼각방정식도 다뤄주시면 감사하겠습니다
담에 한번 노력해볼께요
이게 내가 아는 부엉이지