수능을 시간 내에 완주하는 방법
2026 The All Preview [250108].pdf
안녕하세요 :) 디올러 S (디올 Science, 디올 소통 계정) 입니다.
[출판한 대표 교재]
[저자 소개 및 인증]
[2025, 2026 과탐 공부법 가이드 (Ft. 사탐런)]
수능 생명과학은 타임어택 시험이라 여겨지곤 합니다.
생1, 생2 고난도 자료 해석 자체에는 다소 시간이 걸리기에
준킬러(수리 추론), 비킬러에서 시간을 줄이는 게 중요합니다.
[비킬러]
https://youtube.com/shorts/sk74UtUfp4I?si=KsExplSki0hEl3JN
[준킬러]
https://youtu.be/uJDAph14lR8?si=hASRSHr1njhYdwpZ
[최고난도]
https://youtu.be/G_VfEwl2TAk?si=cutnAwwE97-1BkWq
곧 표지 관련 소식으로 찾아뵐 듯 합니다
항상 글 읽어주셔서 감사합니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
점공률 51퍼이면 최초합~추합라인은 다 들어왔나요? 모집인원은 10명대 초중반이고...
-
왜냐하면 친구가 없기 때문임 원인이 없으니 결과도 없다
-
아 싸버렸다 3
Rnp 비문학을 사버렸어요 이제 나도 216학파
-
아니 커피값한잔 공유하면 안되냐는 마인드면 님들이 가입을 하세요 ㅋㅋㅋ
-
갈거임? 심지어 가서 라인도 자동으로 잘 타게 되어있음
-
대박
-
강기분 마더텅 3
기출 한번 돌리고 강기분 하는게 좋을까요 아니면 강기분하고 기출 돌리는게 좋을까요?
-
특히 한의대가 사탐으로 가기 쉬운편 근데 얘네 줄면 이과애들 여기서 전쟁하는건가...
-
물론 개인의 노력이 가장 중요하겠다만 한번 더 도전해봄직할까요? 22는 수특만 풀고...
-
국방부 0
Analyses가 아니라 Analysis 아닌가 Korea 도 Korean 아니면...
-
171130 4
현장에서 a까지만 구하고 시간 끝남 그래서 아껴뒀다 재수때 시도해봤는데 하루하고...
-
ㅈ반고 수시최저러 표본은 굳건합니다! 원과목은 안전하니 과탐러 여러분들은 n제풀이에 종사해주십시오
-
내년부터는 그냥 꿀정도인듯… ㅇㅇ..
-
네네
-
하재호라는 분 진짜 열심히 한 것 같은데 56456 이였는데 55233 된 거 보고...
-
1덕코 = 1.4원정도 되나
-
하.. 경영쓸껄.. 불안해불안해.. 501.3*인대 현재 60등!!!! 전년추합율...
-
과목별로 강사까지 붙여주고 지원 다해줬는데도 전문대 얘기가 나오네 ㅋㅋㅋ 3개월만...
-
패밀리마트?
-
또선생 3
진짜 잘가르치시나보네 고정적으로 2등급은 보장시켜줌 이번에 메가도 가셨고 헬스터디 최대수혜자신듯
-
선착순 1명 천덕 11
꾸러기
-
말 그대로 재수나 반수 같은 걸 정할 때 제일 중요하게 따져보는게 뭐임? 국수탐중에...
-
잠깐 휴릅 1
현생 살기 너무 바쁘네요.. 나중에 합격증이나 들고오겠습니다
-
고점에서 저점까지 3년걸림..
-
냐옹~ 2
멍멍~
-
언제에요? 진학사에는 1월 15일 되어있어서 혼란스럽네? 오류인가? 다 2 7에...
-
선택과목언매 확통 동사 사문 일본어국어전형태 나기출 독학 + 유대종 커리큘럼 취사...
-
다군 0
다이너마이트 군단
-
그래도 수학 거의4컷쯤인데 수원대도 못가구나 지방권은 ㄹㅇ수시가 답
-
사과계가 펑크났다고 들었는데 혹시 다른 대학에 비유하자면 어느정도로 난 걸까요?
-
올해 시립대에 신설과 다군에 2명 뽑는 학과 있는데 추합 많이 돌거라고보시나요?...
-
1차도 조기발표하면 내일 나오는건가용? 아님 2차만 조기발표하나요
-
면접만 잘보자.. 16
제발 제발
-
남자들이 모여서 저랬으면 바로 체포됨 ㅋㅋ
-
호머식채점이 결국 맞앗던건가..ㄷㄷ
-
근데 발표 왜케 늦게함
-
여기서만 사흘동안 갇혀 있네요;; 우주선 안에 있는 S'이 볼 때 지구와 목성 사이...
-
진학사 점공 업데이트 10
1월 2일 이후 언제 인가요?
-
예전에 이 닉쓰다 친구한테 옯밍아웃 당한적있음
-
뭐냐 이게….ㅋㅋㅋㅋㅋㅋㅋ (5명뽑음)
-
저는 인싸가 되고싶어서 통기타 시작했어요..!
-
마지막까지 비겁하게 갈 것인가?
-
응애 1
응애응애 응으응ㅇㄴ
-
그냥 글 많이 쓰면됨?
-
하재호 수능 등급 예측 - https://orbi.kr/00069713619...
-
군수 혜택 0
받을 수 있는 그런거 없나요? 예전에 어디서 봤는데 조정식 선생님이랑 몇몇...
-
쌈무나보고가라 4
-
중앙대 화학 0
763.3X 될까요? ㅜㅜ
혀누쌤도 분수형태 근수축에서 유리함수 수렴성 이용한 풀이 설명하시나요??
https://youtu.be/1W6xfg_knd8?si=efQgBEzw-L8ZRjz4
이거 말씀하시나요!
말씀하신 수렴성이 함수 개념 중 간격함수와 점근선을 활용해서 말씀드렸던 본 내용인 듯 합니다
(2026 디올 교재 보충 영상입니다! 수리 개념과 근간까지 담기에는 교재가 너무 Too much해져서,,,)
감사합니다 :)
네 맞아요! 저는 다른 선생님한테 배워서 내용자체는 조금 다르긴 한데 본질적으로는 같은 내용이네요!
https://youtu.be/RM8_bCiNbPg?si=LVRzH_Kc-Y-kIegI
수열이나 함수 해석에 있어 선생님 분들 별로 이견이 있을 수 있지만
결국 궁극의 도는 유사한 것처럼 숫자 감각 배양해 주시는 분이라면
가장 먼저 시간 단축으로 말씀해주실 유형이 근수축, 유전 현상인 듯 해요!
[유전 현상]
https://youtu.be/egT6fIpMO6w?si=ph9OHjvvyO-K8QGh
잘은 모르오나 좋으신 분 같네요 댓글 감사합니다/-/
어우,,, 살짝 날것의 모습도 좋아해주셔서 감사했습니다,,, 매년 교정할 때마다 보면 소진화시킬 것 투성이던데,,, 새해 소망하시는 바 모두 이뤄지시길 기원할게요 (o_ _)o (아마 현 첨부 페이지(수리 감각, 분수 연산)는 그 때 디올 or 디올 N제에도 있었던 내용으로 기억하긴 합니다!-! 2023 수능 토대 자료인지라)