확률 잘하는사람좀... 평가원 문제 오류??
(문제는 2019년도 시행된 9월 모의고사 수학가형 18번임)
18번에서 (가) 확률을 구할 때 9개를 뽑아 순서에 맞게 나열하는 경우의 수 중
빨6 파1 노2를 뽑아 나열한 경우의수를 구하는 것인데 이경우 아무런 조건 없이 주머니에 빨6파3노3 있고
9개 꺼내서 빨6파1노2 뽑는 확률이면
해설지 풀이가 맞겠지만 이 경우 24점 먼저 획득하면 끝난다는 조건이 붙어있는데,
이 조건을 고려하면 전체 경우의 수가 변하지 않음?
(나)에서도 마찬가지로.... 해설지 읽고 해설 강의 아무리 들어봐도 이런관점 언급조차 안하네 내가잘못생각한건가?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㄴ 선지에서 왕안석이 틀린 이유를 어떻게 판다해야 하나요? 216해설강의를 보면...
-
가채점표 안쓸듯 2
가채점표 겁나 사놨는데 걍 수험표에 표 그려서 바로 갈기는게 시간 덜걸리는거같음...
-
로피탈 질문 4
이거 맞나여??
-
이 다음에 뭐 푸시나요?
-
소설도 막 미친듯이 못알아먹게 모르는 단어 남발 아니면 어느정도 읽히는데 고전시가나...
-
조퇴하고 병결해야하나
-
1. 올해 서울대 가려는 친구들은 가산점 때문에 2과목 2개하나요? 작년엔 2랑...
-
콘서타27 매일 복용하고 평가원 모고때는 긴장을 심하게 해서 위부팽만감 + 심장이...
-
ㄱㄱ
-
입실하러 가기 전에 집에서 싸고 가고 싶은데 집에서 한번 싸도 국어나 수학 볼때 꼭...
-
뭐든 상관 없으니 그냥 공감해줘.
-
지금 ㄹㅈㄷ로 조용하네 내일부터 8 40에 쳐야겠다
-
오밐추 3
오부이들 오늘도 화이팅
-
[속보] CNN 초기 출구조사, 후보 긍정적 평가 해리스 46% vs 트럼프 42% 3
후속기사가 이어집니다
-
제발요 너무졸림
-
국어 : 구주 연마의 서 복습 + 최근 3개년 수능 + 언매 기출 + 혜윰 모의고사...
-
성적차이 말 안 됨
-
내일부터 기출로 회귀해야지
-
부사관 학벌 2
대부분 고졸 혹은 지방 4년제 맞음??
-
오늘의 모닝실모 1
한수 8회 강대X 10회 목표 점수대 90이상 100이상
-
강의실 책상에 그대로 있네 진짜 존나 다행이다
-
옯모닝 0
음 9시이전이면 얼버기지.. 음음
-
수 상 수 하 개념을 아예 모르는 건 아니지만 내신공부를 하나도 안했다보니 문제를...
-
다들 화이팅!
-
와 1
수능 냄새 난다
-
동네 작은 학원에서 재수반 관리 및 수학을 가르치는 강사입니다 오늘 모의고사 치르는...
-
가방회수완료 0
이제 옷이랑 자켓이랑 이어폰만 찾으면 된다
-
그냥 대부분 직관적인감에 의존하는거죠?
-
ㅎㅇ 2
-
얼어죽겄네
-
clothing20snu 대성 커피 먹구 가 ~~ ⸝⸝ɞ̴̶̷ ·̮ ɞ̴̶̷⸝⸝ 0
있잖아, 지금 2026 19패스 구매하고, 내 ID를 입력하면 너도, 나도 각각...
-
중대 3
검은색 한자 과잠 사랑합니다
-
사연보고 추첨 90씩 두과목이면 현강비 한두푼 아닐텐데 쿨하게 포기하네
-
굿모닝 10
-
처음도 아니고 수능 일주일 남기고 이러니까 화가 ㅈㄴ 남 그냥
-
모교 갓다가 학교 알려주면 그 학교로 가는 곤가? 어케대는거예요?
-
4 1
군수생 달린다 재활하기 가장 만만한 생윤부터 공부하는 걸로...
-
그놈이 왔구나
-
이거 진짜 루틴된 것 같은데 족비상이에요,,,
-
사설벅벅벅벅하다가 평가원 푸니까 모래주머니 풀은 느낌 1
엿같은 계산도 배배 꼬아놓은 표현도 나를 막을 수 업다. 이몸, 최강.
-
나중에 볼려고 했는데 제목이 갑자기 생각이 안나요
-
삼수해야지 5
진심으로 저렇게 생각하는게 긴장을 줄일 최대한의 방법인 것 같다
-
내 다리털 땜에 내가 간지러움;;
-
나 7시 45분에 기상함 이게 최대야 어무이가 밥 억지로 먹여서 이제 나갈준비하는중
-
비약이 있으니까 약사 할까
-
물2 개념 강의 누가 ㄱㅊ았나요? 보통 얼마나 걸리나요?? 물2는 지금 친구가 대성...
-
수능이라고 세상에서 없애버리고 싶은데 보면볼수록 자꾸 또 보고 싶고 안보면 자꾸...
확률이라는 건 전체 경우의 수 중 우리가 원하는 경우의 수를 찾는 건데, 설령 빨5파3노1 뽑아서 B가 24점을 먼저 획득하는 경우가 전체 경우의 수에 포함되어 있다고 하더라도 그게 배제되어야할 이유는 없죠. 원하는 경우의수는 분자에 해당하는거니까
애초에 B가 먼저 24점을 획득하는 경우를 배제하고 확률을 구하는건 조건부 확률 아닌가요?
그런데 빨5파3노1의 경우에서 파파파노가 먼저 나열되는 경우는 9개까지 안가고 8개 시점에서 사건이 멈추기 때문에 그 이후를 가정해서 전체 경우의수에 넣어야되는건가요? 아니면 빨3파3노3의 경우는 파파파노노노 나열하면 6개까지 가고 멈출수있는데 그 이후도 가정해서 전체경우의수에 넣는건가요?? 이해가 안됩니다.
전체 경우의 수는 순서를 고려하지 않은 모든 경우의 수를 의미하기 때문에 그런 순서 이해 관계를 개입시키지 않아도 됩니다. 분자에는 말씀주신 빨5,파3,노1가 조건을 만족시키지 않기때문에 적힐 필요가 없고요. 가령 빨간색,파란색,노란색 공을 각각 6개 1개 2개를 뽑는 상황이라면 순서에 관계없이 해당 개수만큼 각 공을 뽑아주면 되기때문에 분모는 전체 12개 중 9개의 공을 뽑은 조합의 수가 적히는것이고, 이때 말씀주신 빨5,파3,노1 개수만큼 뽑는 경우 또한 포함됩니다. 분자는 그저 각각의 색상 중 조건을 만족시키는 공을 뽑는 개수를 조합을 이용해 적어준 것이고요.만약 문제에서 구하는 경우의 수가 말씀주신 것처럼 n번째까지 결정된 이후,n+1번째 순서의 사건에 따라 달라지는 경우 분자에 해당 조취를 취해주시면 됩니다.