회원에 의해 삭제된 글입니다.
게시글 주소: https://orbi.kr/00066559755
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
겨우 찾았네
-
노비츠키 어떰? 2
다들 명반이라는데
-
이게되네ㅋㅋ
-
오늘 점심은 2
사과입니다 ㅅㅂ ㅠㅠㅔㅣ
-
반수, 무휴반 0
성공 사례 좀 적어주세요!
-
다이소 건기식이 약사에게 악재이긴 한데 이 자체로 치명적이라기 보다는 이로 인해...
-
솔직히 처음 1월 2월 초반에는 별 차이도 모르겠고 이게 맞나.. 싶었는데 2월...
-
근데 ㄴ은 없어요.
-
현역 이과고 공통 추천해주세요!
-
심로 바이올린 지금 낙원상가에서 35만원에 팔고 있음 5년 전에 몇 개월 밖에...
-
올해 선택과목 뭐 보지 10
뭔가 물2지2 하고 싶은데 이 시점에 물2를 하는게 맞나 싶네
-
일부러 개화같은거 연결성 떨어지게 내고 그 문장을 정확히 읽어야 8번(2번 개화당의...
-
스카 바닥에 샤프심하나 떨어져있길래 주워서 주인찾아줄라다 걍 샤프심에 넣고...
-
지리네 이거
-
개강 하고 오티 주는 안가도되고 여행가세요~제발
-
기모
-
근데 김범준 인강 키리타려는데 공통 수1수2랑 미적분 둘중에 뭐로 더 유명함? 1
수1,수2도 잘가르침?
-
체크카드는 카드할인 안되는거 너무 아쉬움 근데 신용카드 만들면 돈 막 쓸까봐 무서움
-
잇올에 쳐밧혀서 공부해야되는 슬픈 잇올러
-
ㅈㄱㄴ
-
3 월 재수 시작인데 대성 수학 인강 강사 추천좀요ㅠ 1
미적 백분위 74 임요 이미리랑 김범준둘증에 고민긍
-
완전 봄날씨네 0
봄 향수를 뿌려야지
-
많이자자
-
유익한 글들이 가득
-
나도 몰?루
-
꼭먹으러간다!!
-
신뢰감 상승
-
여름에 다시 삿포로 가야지
-
작수 체감상 문학도 강e분만 해도 된거같은데.. 수특 풀기 싫어서 그런거 절대아님..ㅎ
-
복수전공 질문 4
대학교 2학년까지 전체 평점평균 4.0~4.3 받으려면 대략 얼마나 공부에 시간...
-
집에 설치기사님 와서 설치하는데 무조건 얼마인지 물어볼 것 같은데 내 돈으로...
-
한명탈릅했나 2
쪽지가 줄어듦
-
ㅈㄴ귀찮다ㅇㅇㅇㅇㅇㅇㅇㅇ
-
주인 잃은 레어 1개의 경매가 곧 시작됩니다. 오르비 QR코드"오르비로 가는...
-
물1 vs 생1 5
의대 지망할거면 물1 버리고 무조건 생1 해야 될 정도임...?
-
아이코난!
-
개강 첫날 3
밥약 두근두근
-
패티 불맛 유무도 그렇고 소스양도 마음대로
-
빠집니당
-
안녕하세요 오르비언 여러분 덕분에 전부터 공부 방향이라던지, 좋은 컨텐츠...
-
딱 정했다 0
적금 깨서 100만원짜리 모니터 살거임 으하하 글카도 바꾸고 싶은데 바꾸려면 글카...
-
점심여캐투척 4
음역시귀엽군
-
대체 어디간걸까요... 노크에서 못찾은 룸메는 외국인이라는 소문이 있던데 니하오?
-
걸을 때마다 아픈데 그냥냅둘까요 한의원이라도가볼까
-
김지영 수강중인데 주간지는 뭐로 해야될지 모르겠어요 좋은 주간지 추천해주시면 감사하겠습니다
-
주간지 언제쯤 나오는지, 어법 강의 안보이는데 원래 좀 늦게 나오는건지 궁금합니다..!
-
하 진짜 망한듯 늙었는데 소심하고 재미도 없음
-
기가막히다 그냥 ㅋㅋ
-
수학 젤 안좋아하기도 히고 못하는데데최근 3개년 기출 뽑아 풀려니 넘 오래 걸리네요...
그걸 이해하는 게 되게 중요해요 꼭 짚고 넘어가야함
공식 유도는요
S=vt니까요 속력이 일정하다 가정했을 때 (평균 속력이라던가) 속력과 시간을 곱하면 이동거리가 나오죠
감사합니다 제가 물어보는 건 그 공식 유도가 필요할까요? << 였어요
할 수 있으면 해보는 게 좋아요 은근 도움됨
근데 물1에서 공식유도는 보통 그래프나 정의에서 오는 경우가 많아서 어렵진 않아요
인강에서 공식 유도해 주는 편인가요?
제가 빡머갈이라 혼자 하는 데에 무리가
아마 그래프 그리고 다 설명해주지 않을까요?
제가 인강을 들어본 적이 없어서..
조건은 어떻게 찾나요
저 변위 공식이 등가속도에서만
성립된다는 그런 조건(?) 같은 거요
그거도 다 함수 그려보면 되여 등가속도는 vt그래프가 1차함수라 쉽게 계산이 되는거고요
과학은 왜?라는 생각보다 어떻게 쓰는가에 대해 집중 하는게 좋습니다.
물론 그런 기본적인건 알고 넘겨도 되지만 모든걸 다 왜?라고 생각하는 태도는 좋지 않다고 생각합니다. 수학 공식으로 얘기 해보면 굳이 증명하지 않아도 공식만 적재적소에 쓸 수 있다면 문제를 풀 수 있음과 같은 생각입니다.
알고가는 정도면 좋겠지만 이 공식이 왜 성립되었나 << 에 대해서
설명 가능할 정도로 본인이 인지하고 있어야 수험장에서도
본질 그 자체를 직관적으로 이해하고 있기에 변수나 킬러 문제가 나와도 해결할 수 있는 사고력이 생기지 않을까요?
자꾸 하나라도 모르는 거에 대해서 강박이 심해지고 불안해서요
예를 들어 수학2에서 함수의 극한 성질은 대학교 과정에서 증명 되기에 따로 수험생이 증명 방법을 알 수 없습니다. 물론 고등학교 교육과정안에 있는 내용은 수학에서도 따로 증명 해볼 수 있겠죠. 이거와 마찬가지로 물리라는 과목도 기본적으로 알기 편한 내용이 있고, 증명하기 어려운 내용도 있습니다. 그리고 수학을 예시로 들어보면 상위권들이 모두 공식 증명을 할 수 있을까요? 제가 본 상위권들은 적재적소에 잘 활용할 줄 알지. 증명을 할 줄 아는 사람은 소수밖에 못 봤습니다. 그런 불안감은 시간낭비라고 생각 합니다.
애매하네 일단 고마워요 제 새 피드에도 답변 좀
혹시 올수 보시나요?
아니요 내년 수능 봅니다