회원에 의해 삭제된 글입니다.
게시글 주소: https://orbi.kr/00066559755
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
하루가 달리 0
호미들은 신이야
-
제 이미지도 적어주시면 감사링
-
2021년 5급 행정고시 합격 2025 서울대 로스쿨 합격 뭐하는사람이지
-
이번에 반수해서 이대 가는데 머리로는 좋은 학교, 좋은 과라는 걸 알면서도 마음은...
-
ㅇㅇ..
-
잘자요 10
행복한꿈으로 다들잘자요
-
새벽 호감도 적어드림 36
-
https://m.site.naver.com/1Abu2
-
방학에 400 정도 벌은 거 350 모아놔서 1학기엔 용돈 안 받기로 했어요 하하
-
담달엔 6
오르비언들 길게 써줘야지
-
제목 그대로 백분위 86정도의 수학 3등급을 목표로 하는데 강사 추천좀...
-
월세는 보통 부모님이 내주시는게 일반적임??
-
착한 말만 쓰려고 노력중이에오 그렇다고 해서 최근 오르비언들 위로해준게 가식은 아님니다
-
ㄹㅇ 호텔급이던데 방도 좋구 핸드폰만 좀 줬으면...
-
아무것도 모르겠다 ㅋㅋ 수학도 안풀려 멍청이가 되어 버렸어
-
아 그리고 예산은 어느정도로 잡음? 용돈받는 20대 대학생기준으로
-
인생 참 잘돌아간다
-
건대생 쪽지 좀 2
새내기 말구
-
엠티전까지 친구를 만들어야만한다 …
-
반갑습니다. 9
소통해요~
-
친구도 많이 사귀고 여자친구랑 데이트도 하고 밴드부 들어가서 공연도 하고 공부할 땐...
-
연애하고 싶다 8
나랑 연애 할 사람
-
수능공부 하던생활이 더 익숙해서 도서관 가있는게 맘이편함... 학점잘받을확률업임..
-
으하하하하하 기분이 좋구나
-
오늘의 야식 6
신라면 투우움바
-
고등학교 자퇴하신분들 주변 친척들한테 말 하셨나요? 전 안 했는데 궁금하네요
-
작년 1년을 하찮게 보낸것을 후회 그것에게 너무나도 집착했던것을 후회하지만 인생은...
-
걍 조용히 할거 해야지 뭘 어울리냐 어린애들이랑 에휴
-
시대도 정규반이라 그런지 그냥 거의다 재수생이던데
-
휴릅함 6
3월에 개강하면 수업듣고 휴학이면 다시올게 ㅂㅂ
-
으흐흐 나도 이제 사이드뱅 근데 비대칭이라 결국 미용실 가야할것같은게 킬포임.
-
어카냐 현타올듯
-
존나 어렵네
-
나이많다고 배척하고 그러진않음.. 근데그냥혼자힘듦..
-
본인 수준보다 조금 더 높은 n제를 푸는게 좋음 좀 구체적으로 말하자면 푸는 문제가...
-
보통 선배들이랑 더 친한가요?
-
자꾸 나보고 정신과가서 약받는거말고 걍 동네 심리상담센터 가라는데 난 잘 모르겠음...
-
이 나이 쳐먹고 신입생이라는 사실이 절망적이네 나 진짜 대학 생활 어캄? ㅋㅋ 씨발
-
1-1에 철학과 수업 듣는 거 괜찮음?
-
내 닉네임은 “보일때마다공부하라고해주세요” 야.
-
히히
-
나 왜 또 실검임..? 11
오늘은 그림만 그렸는데?
-
강혜원 6
닉언아님
-
작년에 도쿄갔으니 이번에는 후쿠오카로
-
작년에 2025 문해전S1 풀고 얻어가는 게(단순 지식 뿐만 아니라 태도 교정...
-
우리를 천천히 피할 수 없는 수능으로 인도하는, 멈출 수 없는 시간의 흐름입니다.
-
진짜 명강연이었음
-
금리 1.7퍼면 은행에만 넣어도 이득아닌감
-
1. 뉴런 양이 방대하고 잔가지가 많은거? 결국에 우진쌤의 대표강의이고 미출제...
그걸 이해하는 게 되게 중요해요 꼭 짚고 넘어가야함
공식 유도는요
S=vt니까요 속력이 일정하다 가정했을 때 (평균 속력이라던가) 속력과 시간을 곱하면 이동거리가 나오죠
감사합니다 제가 물어보는 건 그 공식 유도가 필요할까요? << 였어요
할 수 있으면 해보는 게 좋아요 은근 도움됨
근데 물1에서 공식유도는 보통 그래프나 정의에서 오는 경우가 많아서 어렵진 않아요
인강에서 공식 유도해 주는 편인가요?
제가 빡머갈이라 혼자 하는 데에 무리가
아마 그래프 그리고 다 설명해주지 않을까요?
제가 인강을 들어본 적이 없어서..
조건은 어떻게 찾나요
저 변위 공식이 등가속도에서만
성립된다는 그런 조건(?) 같은 거요
그거도 다 함수 그려보면 되여 등가속도는 vt그래프가 1차함수라 쉽게 계산이 되는거고요
과학은 왜?라는 생각보다 어떻게 쓰는가에 대해 집중 하는게 좋습니다.
물론 그런 기본적인건 알고 넘겨도 되지만 모든걸 다 왜?라고 생각하는 태도는 좋지 않다고 생각합니다. 수학 공식으로 얘기 해보면 굳이 증명하지 않아도 공식만 적재적소에 쓸 수 있다면 문제를 풀 수 있음과 같은 생각입니다.
알고가는 정도면 좋겠지만 이 공식이 왜 성립되었나 << 에 대해서
설명 가능할 정도로 본인이 인지하고 있어야 수험장에서도
본질 그 자체를 직관적으로 이해하고 있기에 변수나 킬러 문제가 나와도 해결할 수 있는 사고력이 생기지 않을까요?
자꾸 하나라도 모르는 거에 대해서 강박이 심해지고 불안해서요
예를 들어 수학2에서 함수의 극한 성질은 대학교 과정에서 증명 되기에 따로 수험생이 증명 방법을 알 수 없습니다. 물론 고등학교 교육과정안에 있는 내용은 수학에서도 따로 증명 해볼 수 있겠죠. 이거와 마찬가지로 물리라는 과목도 기본적으로 알기 편한 내용이 있고, 증명하기 어려운 내용도 있습니다. 그리고 수학을 예시로 들어보면 상위권들이 모두 공식 증명을 할 수 있을까요? 제가 본 상위권들은 적재적소에 잘 활용할 줄 알지. 증명을 할 줄 아는 사람은 소수밖에 못 봤습니다. 그런 불안감은 시간낭비라고 생각 합니다.
애매하네 일단 고마워요 제 새 피드에도 답변 좀
혹시 올수 보시나요?
아니요 내년 수능 봅니다