미적분 28번의 본질과 변형 문항 12제
28번aaa.pdf
* 수정수정한 문항입니다.
안녕하세요. 한성은입니다.
숟가락을 얹으러 왔습니다.
양 변에 1을 더하는 것도, 루트 씌워 f(x)를 구하는 것도, 대칭성을 이용하는 것도 28번의 본질이 아닙니다. 28번의 본질은 s축입니다. (농담) 첨부 파일 2번 문항만 다뤄봐도 f(x)를 구하는 풀이의 한계점이 보일꺼예요. 제가 설명한 영상 첨부합니다. 참고하세용.
변형 문항은 6번까지는 수학2 문항, 7번부터는 미적분 문항입니다. 모의고사에 수록할 정도로 가다듬지는 않았지만 연습용으로는 충분할 것 같습니다. 오류가 나오기 좋은 소재라 뭔가 실수가 있었을 법 하니, 문제도 의심하세요.
감사합니다. 행복하세요.
* 오류가 하나 발견되어 수정하였습니다. 10번에 조건 g(0)=0을 추가합니다.
* 두 번째 오류가 발견되어 수정합니다. 11번에 우변 함수를 수정합니다.
난이도 준답시고 우변을 이상하게 박았더니 대칭이 아닌게 되어 있었네요..
* 세 번째 오류가 발견되어 수정합니다. 11번에 조건 0<g(0)을 추가합니다.
f(x)가 x=1에서 극솟값을 갖는 경우를 놓쳤습니다. 이 경우를 풀면 답으로 2가 나옵니다.
0 XDK (+11,000)
-
10,000
-
1,000
-
ㅇㅅㅇ 자~ 일단 바쁜비버를 설명하려면 튜링머신부터 설명해야하는데 튜링머신 지문이...
-
[치대 정보] 치과의사 전문의, 전문과목에 대한 소개 3
치과의사 전문 과목에는 총 11개 과목이 있습니다. 모두 철저한 수련 과정을...
-
7일 후 변경 가능, 글씨 파란색이길래 나 가입한지 7일 지났는데?-->어 15만...
-
으으..
-
일반고에서 2학년 때 내신으로 확통 1등급 2등급였음 이번 겨울방학부터 미적...
-
수학공부하다 자괴감들고 현타와서 계획표공부 다 쌩까고 확통만 좀 끄적였네요 진짜...
-
통계임요?
-
...
-
25수능 언 미 물1 지2 96 98 2 72 98인데 연치 목표면 사1과1이...
-
몇시에 잘거임뇨 2
전 자정쯤
-
내가암
-
밤이 깊었습니다 16
씹덕들은 고개를 들어주세요
-
국어 이원준T 수학 정병호T 바자관에 책 딱 꽂아두면 커뮤 농도 짙어 보여요 거기에 기하까지
-
연애 무조건 할수있을거같음 그니까 일단 자기관리부터 좀 해봐야지…
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
김재훈 특강 0
언제 또 열리는거임?
-
사실 원, 타원, 쌍곡선, 포물선은 다 같은 도형이에요 ㅎㅎ 14
사영적으로 같거든요. 저 도형들에 빛을 쏴서 다른 평면에 생기는 그림자를 생각해보면...
-
ㅠㅠㅠㅜ
-
지듣노 9
도쿄 가고싶네
-
전 이자 매일매일 주는게 신기해서 토스뱅크에 넣어뒀는데 전보다 이율이 많이 줄었더라구요...
-
2학기는 최소학점듣고 1학기땐 그래도 열심히할거긴한데 반수에 남자라서 지금 사기가...
-
쉽게 닉변하는법 없음?
-
연세대 의대+항상 수석+인기 많음+운동 잘함 연애로 메이저리거도 이겨봄
-
피자 사먹는데 만사천원을 쓰네 ㅋㅋ
-
늦은거임?
-
재밋는 사실 12
직선의 isogonal conjugate는 쌍곡선임을 아시나요 흐흐
-
테크토니4 0
헉
-
인강판끝물에나타나서리트까지단물쪽쪽빼먹다가겠네
-
소맥 한 잔은 소주 몇 잔으로 쳐야해여?
-
“우린 니네 수능 공부할때 생기부 활동하느라…” 아아…수상기록봉사활동독서기록 다...
-
저도 이제 국어S(황)이 될거예요! 첫시간엔 학평으로 진단을 한다는데 40점은 넘을...
-
시이나 마시로
-
그럼 정시에도 내신이 반영되는 "28수능"을 응시해보는건 어떨까?
-
진짜 개 말도 안 되는 고수. (세계적인 사람임)사실 좀 다른데 같은 캐릭터임
-
응앙응앙
-
10억 받고 자퇴하기 13
할거임? 엔수 불가능.
-
군대갈 때 8
군수하는데 인강, 시대 선생님들 과목별로 한 명씩 같이 데려갈수 있으면 국영수탐...
-
수시글자꾸쓰는거 5
사실 존나 부러워서 그래... 나도 ㅈ반고 갔으면 울산의 수시붙고 놀고 있을텐데...
-
4주차부터 합류라 1주차부터 3주차는 다시보기로 사야한다해서 샀는데 이것도 7일...
-
내 커뮤 12
뻘글을 계속 쌈크킄, 흐흐흐, 으흐흐 같은 웃음 소리를 많이 씀쌍시옷 종성에 안 씀
-
대충 의평원 불인증나면 어떤게 문제가 되는거에요?? 개원 못함?
-
으헤헤닉변신고 안할꺼야 이 인간들아 크킄
-
아ㅅㅂ 6
피방 화장실에서 오바이트 했다
-
갑자기 나오시면은..
-
음음
-
서울대학교 국악과 반수 자퇴 불가능. 졸업해야함
-
뭐 초5때부터 쓰는 닉이니까 친한 애들은 다 알긴해친한 애들 특정은 알 바가...
-
흠 흠 흠
-
한명 더 가자!!
11번 문제에서 극댓값과 극솟값이 각각 6.2 인거를 어떻게 바로 알아내나요??
우변 함수가 코사인이 최대일 때 최소, 최소일 때 최대입니다.
그러면 좌변은 연속함수인데 최대 최소를 가져야하니까 증감이 바뀌는 곳이 필요함을 알겠습니다!. 근데 g가 정해지지 않은 상태에서 바로 f가 극대 또는 극소인 곳에서만 최대 최소가 결정되어야한다는 보장이 있나요?
예를 들어 f'(g(x))가 0이 되는 곳이 없어도 충분히 최대 최소를 만들 수 있지 않는가라는 것 입니다.. 궁금합니다ㅠㅠ
그 부분이 이번 28번과 마찬가지인데, 아래의 g값의 대소 때문에 '건너가야' 하기 때문입니다. 강의 보시고 문항들을 앞에서부터 풀어보면 이해 되실꺼예요.
네 g의 연속성을 위해서는 f가 극점이 되는 x값을 건너야한다는 논리를 써야만 되는거 맞는거죠!...최대 최소만으로는 필요충분이 아니라서 여쭤봤습니다
그런데 혹시 g(3)과 g(1) 값이 모두 3이 될 수는 없는건가요? 꼭 하나의 경우로 확정 되어야하는 상황인건가요ㅡ
g(0)<g(4) 때문에 극댓값을 왼쪽에서 오른쪽으로 건너가야 합니다.
g(3)과 g(1)이 같다고해서 못 넘어가는거는 아니지 않나요??
g에 대한 증감 조건이 구간별로 주어지지 않는 이상 바로 g값을 확정하기는 힘들어보입니다만..
g(2)가 f(x)의 극대점의 x값이 되어야 하고 g(0)~g(2)는 왼쪽, g(2)~g(4)는 오른쪽에 있어야 합니다.
넵 이제 완벽히 이해했습니다. 좋은 문제 감사합니다
11번 x=3일때 f(g(x))값이 3인데 이러면 g(3)=3이 될 수 없지 않나요?
헉.. 맞습니다. 이런.. 제가 잘못 생각했네요 ㅜㅜ
덕분에 오류를 알고 수정했습니다. 감사합니다.
f의 극솟값 x좌표가 4가 아니라 1일 수도 있지 않나요?
아 수정됐었네요
죄송 & 감사
좋은 문제 감사합니다. 28번 처음 해설 듣고 멘붕왔는데 문제 풀고 적용하면서 감잡을 수 있었어요.
고3학생입니다 덕분에 감이 좀 잡히는 거 같은데..
결정된 겉함수 치역의 범위에 따른 속함수의 범위/연속으로 인해 발생할 수 밖에 없는 극대,극소 해석이 속함수가 명시적이지 않은 상황에서 결과를 보고 역추론하게끔 평가원에서 기존의 추론방향을 바꾼 것 뿐인거라고 생각드는데 제가 잘 이해한 것이 맞을까요?
대충 맞는 것 같아요.
선생님 1번 해설 틀린거 아닌가요
g(x) 계수가 양수 아닌가요?
네. 헷갈렸습니다 ㅜㅜ 감사합니다.
썜 12번 g(x) 미분가능 조건 없어도 되나요?
f가 (2,1) 점대칭이고 우변이 (3,1) 점대칭이니까 g가 (3,2) 점대칭+연속이니 미분가능. 이렇게 다시 풀어봤는데 맞을까요?
미분가능 조건은 필요하지 않습니다. 대칭성으로 푸는 것이.. 결과적으로 맞긴 한데 논리를 채우기 힘들어 보이네요. g가 점대칭이 어떻게 나오나요? s축 ;; 경로 선택으로 풀어보세요.
쌤 다시 풀어봤어요. 11번 풀고나니 12번은 바로 풀리는거 같아요
11번에서 경로 선택이라는게 부등식 조건에서 g(0), g(4), g(6), g(10)은 확정되고,
g(x)를 완성할 때 g(1)에서 g(4)까지는 x의 양의 방향으로 쭉 가다가 g(5)에서 계속 쭉 가면 g(6) 값이 2가 되지 않으므로 f의 극대까지 되돌아갔다가 다시 쭉 가면 g(10)까지 이어지게 되니까 값이 해설이랑 같게 나오는데 이렇게 푸는게 맞나요?
훌륭합니다.
좋은 문제 만들어주셔서 감사해요 ❤️
1번 문제에서 실수 전체에서 f가 연속인데 해설에 있는 g에 -2값을 넣은 값을 만족시키는 h의 정의역 값을 f가 못가지는거 같은데 흠.. 제가 뭔가 잘못이해한걸까요?
1번 해설에 '최고차항의 계수가 음수이다.'를 '최고차항의 계수가 양수이다.'로 바꾸면 나머지는 문제가 없습니당.
선생님, 안녕하세요. 저 질문이 있어요. 써밋n제에 짧은 글로 한두쪽 실린 것처럼 <한성은의 수학공부법> 칼럼을 더보고 싶으면 어떻게 해야 하나요? 이거 책이나 블로그 포스팅은 없는지 궁금해요.
엄청나게 늦게 봤군요. https://blog.naver.com/sungeun_82 에 틈틈이 올릴 예정입니다.
선생님 늦게라도 답변주셔서 정말 감사합니다! 블로그에 사진 넘 멋지십니다 ㅎㅎ