오늘 3모 11번 도형 문제에서
저기로 수선의 발 떨구는게
필연이라고 봐야하나…
아님 발상이라고 봐야하나…
일단 60도랑 더하기꼴로 주어진건
굉장히 저 수선의 발을 어필하고 있는듯한데….
나는 풀면서 이 풀이는 좀 발상인가..? 싶었는데
님들 어케 풀었는지랑 의견이 궁금해요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그나마 고딩 3년동안 유일한 사람다운 담임쌤이셨는데...
-
세종대 재입학 0
세종대에서 반수할 예정이라 재입학제도에 대해 찾아봤는데 아무리 찾아도 정확한 정보가...
-
하ㅡ.. 난 어떻게 해야하지
-
ㄹㅇ
-
전용 클라우드가 있어요
-
나 한창 오르비 할때 생긴거 같은데 아직도 그짓을 함?
-
팔로워는 800명인데 그이유가.. 예전에 르세라핌 피어리스 쳐서 좀 팔로워가 오른것도..
-
독보적인 귀여움으로 혜성같이 등장한 옯인싸였는데 진짜 그냥 공부하러 간건지 비갤...
-
럽미라잌 디스 1
럽미라잌 댓 럽미라잌 디스 럽미라잌 댓
-
에휴
-
저는 한 200? 정도인데 가끔가다 400인 친구들도 본 적 있어요
-
가천대 어딧슴 6
어딧슴
-
근데 그쪽발 드립 재밌는게 너무 많음 ㅋㅋㅋ
-
맞팔구 11
오랜만에..
-
수능을보네..
-
현역이들 미안해 11
시작해 버렸어...
-
네~안녕하세요
-
조대 약대 유급 1
조대 약대 유급 잘주나요? 그 외 약대 중 유급 잘주는 걸로 유명한 약대 있다면 알려주세요
-
흐음
-
자러갈게 8
내일 과외랑 시험 있어서 일찍일어나야돼 다들잘자
-
ㄹㅇ 괜찮지 않음? 친숙한 느낌도 들고
-
아 시방 9
개취함
-
국어 옛날 기출 1
국어 옛날 기출 문제집 좋은거 있나요?
-
흠
-
오르비 진짜 0
존나재밌네밥은언제먹냐아
-
오 1
민트테인가 은테인가 아무튼 이쁘네
-
4호선 하면 동작 - 이수 - 사당 이런식으로 순서대로 말해야하는건줄 알았음
-
둘이 그냥 취향차이인가요? 더 좋은게 있나요?
-
올해 강기분을 못들어서 얼른 강민철 선생님의 용안을 뵙고싶네요
-
선착 2명 7
맞팔 ㄱㄱ
-
댓글 ㄱㄱ 생존신고좀 해요!
-
올해 기균 정시 목포약 최초합이랑, 추합어느정도될가요? 1
올해 기균 정시 목포약 최초합이랑, 추합어느정도될가요?
-
푸드득 3
뿡
-
바로 여러분❤️
-
이야
-
그리고 수능은 강민철입니다
-
농협대학교 2
높다고 들었는데 어느정도임...?
-
배움에는끝이없다더니..
-
이미지 적어볼게 22
고고 내가 적고 싶은대로 적어볼겡
-
님 근데 비율이 ㅗㅜㅑ...... 진짜 연예인인줄요 팔로우했습니다 앞으로도 좋은...
-
부산 기숙 갈까 0
백만원 장학+하반기 강k 자습 시간 확보만 되면 제일 좋아보이긴 한데
-
ㅋㅋㅋㅋㅋㅋㅋㅋ
-
님들 라면드시지마세요 체질이라는게바뀝니다 예를들어 초식공룡과 육식공룡이잇는데요...
-
중대 경영 컷 0
어느정도 될까요 의견이 많이 갈리네요
-
의뱃 저격합니다 12
저...격해요❤️ 의뱃형아랑침대에서 응응앙앙팡팡❤️
-
몇번까지 주나요?
안내려도 풀려서
근데 발상은 아닌듯
근데 저 수선의 발을 마땅히 내려야 한다! 까지의 당위성은 솔직히 60도 특수각 아니면 잘 못느끼겠었어요
혹시 님은 수선의 발 안내리고 푸셨나요??
처음 봤을때 너무나도
당연히 수선으로 풀었고
두번째는 ac pc구해서 풀었어요
아하 감사합니당
60도라는 특수각을 사용할 수 있는 직각삼각형을 만들어야겠다고 생각하는건 크게 무리는 아니기 때문에 발상적이진 않은듯
감사합니다
다들 그렇게 생각하시네요
걍 적당하게 풀었나보네요
전안내리긴했는데너무노골적이어서발상까진아닌듯
혹시 어떻게 푸셨나요..?
선생님 풀이 보고 처음에는 발상적이라 느꼈는데 결국 AC의 길이가 sqrt2+sqrt6으로 주어지기에 수선의 발을 H이라 할 때 삼각형 ABH에서 AH의 길이가 sqrt2임을 활용해 CH의 길이가 sqrt6임을 결정할 수 있으니 필연적이라 볼 수 있지 않나 생각합니다.
저는 필연이라는 것도 결국 '내 입장에서 자연스러운' 풀이를 볼 때 쓰는 표현이기에 선생님이 '60도랑 더하기 꼴로 주어진 건 굉장히 저 수선의 발을 어필하고 있'다고 느끼셨다면 필연으로 보는 것이 맞지 않나 생각합니다.
자세한 코멘트 감사합니다
아무래도 딱 한풀이에만 적용되는 풀이는 제 스스로가 지양해서 그런지 조금 의구심이 들었는데 덕분에 해소가 되었습니다
참고로 저는 이렇게 풀었습니다.
1. 삼각형 ABC에서 각 A를 중심으로 cos법칙 돌리면 AC의 길이 알 수 있음
2. 삼각형 PBC에서 sin법칙 돌리면 CP의 길이를 알 수 있음
3. 삼각형 ABC에서 각 C를 중심으로 cos법칙 돌리면 각 C의 크기가 45도임을 알 수 있고 그에 따라 각 ACP의 크기가 30도임을 알 수 있음
4. 삼각형 ACP에서 sin(각 ACP) 값 활용해 넓이 구할 수 있음
아 저랑 3번만 달랐네요
자세한 설명 감사합니다!
전 길이 구한다음 넓이니까 각이필여한데?
그리고 15도 있길래 혹시?하면서 전체삼각형 사인법칙 쓰니까 45도 나와서 그렇게 바로 계산했어요
15도로 힌트를 눈치챈 당신은 센스쟁이
AB 길이 알고 BC 길이 아는데 각 ABC가 75도길래 그냥 cos75 이용해서 했어용
코사인75도를 외우세요..?
이거 중학도형 모르면 절대 못품? ㅠㅠ
전 그냥 바로 사인법칙씀 바로 45도 나오길래 1분컷 냈음
저는 덧셈정리..