공통 킬러 22번 (수학1+수학2)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
스피드 외건이거든.
-
진짜 싸우고 있네
-
보스웰리아 네글렉타라고 불리는 보스웰리아 속의 식물입니다 아로마 성분이 있어서...
-
조조됏내
-
나혼자 외훌이야기 하는거 자체가 이미 좌표방은 성립인거임. 외훌분들 정신차리세요....
-
이성계가 조선 만들때 건국대 햇다는거임 유익햇다면 덕코좀
-
우울증과 재수에 대하여 10
7년간 우울증을 앓고 있고, 반수해서 25 수능 친 사람입니다. 혹여 제가...
-
지금 외대성적인데 이렇게까지 거론되는걸보니 기분이 좋네요.. 제전적대는 관심도...
-
고닉임?
-
제가 최전선에 서겠습니다 믿어주십쇼 가히 일당백의 포스를..
-
원서접수할때 3개월이내 사진이어야되는데 그것보다 시간이 지난사진접수하면 걸리나요?
-
여러분 저 축하해주세요 11
건대 에타에 박제되었어요
-
외대는 영어로 why can do임.. 유익하다면 덕코좀
-
물어도 합법이잖아
-
막상 글 들어가보면 좌표니 뭐니 그런 거 없으니 선동 그만해라^^ 당장 오늘 에타로...
-
냥대 1
원서모집마감시간 몇시에여?
-
부거왔다 9
-
자기 학교 짱짱맨 이게 끝이아니라 너네 학교 똥통맨 ㅇㅈㄹ하는거였어?
-
도와줘요 스피드외건
-
1년이 또 지나니 10
대부분 새로운 사람들 뿐이네... 물론 아직까지 남아있거나 환생한 사람들도 있지만
-
외=건 0
=서고연서성한중경이시동홍과숙부울인아국숭세단광인가전충명상가경
-
기숙학원 로맨스 4
무려 2년 전 이야기
-
나처럼 안가고 생재수하면 대학때문에 싸울일 없거늘..
-
시대인재 대치 낮은 반이라도 가능한가요ㅠㅠ
-
ㅈㄱㄴ
-
외대 장점 5
부엉이가 귀여움뇨
-
쓰면 무조건 떨어지겠죠?
-
우선 모든 코덱스(아프리카 식물)은 크게 “실생”과 “야생”으로 나뉩니다 실생:...
-
이수린보고 바로 알아차리는 사람들 있네 ㅋㅋ 별개로 그덫발포는 씹명반임
-
이런
-
은테 확인용 6
ㅇ
-
자전 안정 0
다군 266명 뽑는 대형과고 실제지원자 1221명중 330등입니다 첨부터 끝까지...
-
햇어여 다군은 이따 쓸거임 아직 고민중 진학사가너무비싸서안샀어요 주변에서 미쳤냐고...
-
바지만 그냥 편한 검정색 트레이닝바지 입으면 안되나..
-
없어질 때까지 수능봐야함? 아니면 그냥 참는거임?
-
펑크는 뮤르겟고 5
내 대가리에 펑크난 건 확실함
-
일단 난 몇개 쓸거긴 한 데 안쓰는 곳들이 아깝네
-
형이야
-
그냥 호불호 씨게 갈리는 여자 몸매취향 수준 아님? 그마저도 호가 70은 될거같은데
-
6칸 최초합 1
30명 뽑는데 6칸 최초합격 뜨고, 실제지원자 중에서 22등입니다. 앞에 빠지실분들...
-
팔로우를 박아주지
-
샹하이 로맨스 5
노래 개 좋은데,500시간동안 듣는 중
-
6월에 있던거 방금 쪽지로 제보해주심ㅋㅋㅋㅋㅋ와 레전드…
-
고속 기준 교육은 연두색이고 국문은 노랑색인데 진학사 기준으론 교육은2칸뜨고 국문은...
-
재수하면 오를까요 10
화미생명사문 백분위 68 74 49 85 국어는 평소에 항상 2였고 9평...
우웨에에엑
예비시행 22번보다 겉보기는 훨~씬 어려워보이는데 ㅋㅋㅋ
이렇게 나오면 문돌이들 거의 다 박살날듯 ㅋㅋ
그렇다면 저의 계획은 성공이네요 ㅎㅎ ㅆ갓님들 달려와서 너무 쉽다 할까봐 걱정했는데
풀기 시작
f(x)=(x-cos(theta))^2(x-sin(theta))^2=x^4-2(cos(theta)+sin(theta))x^3+(1+2cos(theta)sin(theta))x^2-2cos(theta)sin(theta)(cos(theta)+sin(theta))x+cos^2(theta)sin^2(theta)=t(x+1)에서,
f(x)-t(x+1)=(x-a)(x-b)(x-c)^2꼴일 때 교점 개수가 바뀌므로.....아 이거 계산 좀 해야 하네요? 타이핑으론 무리겠다
문제 조건 '서로 다른 교점 개수' 아닌가요 뭔가 이상한데 ㅠ
답 34? 근데 좀 엄밀성에서 불편한 게, 최댓값이 13/4×pi로 '수렴'하지, 실제 그 값은 될 수 없겠네요.
서로 다른 교점 개수 이거는 수정하겠습니다.
그런데 어떻게 푸셨는지 봐도 될까요? 저는 답을 19로 생각하고 있었는데요
g(alpha)=6, g(beta)=2이니까 sin(theta)=cos(theta)인 상황일 때 g(beta)=2이므로 beta=pi/4+n×pi(n은 정수)일 때 성립합니다.
g(alpha)는 alpha가 sin(theta)=-1 또는 cos(theta)=-1인 상황과 g(beta)=2를 만족하는 실근을 제외하고는 전부 6이 되므로 g(beta)=2인 상황을 제외하고는 theta=-pi, -pi/2, pi, 3×pi/2일 때를 제외하면 된다. 따라서 |alpha-beta| 최대값은 (alpha, beta)=(-2pi, 5/4×pi), (-7pi/4, pi) 2 경우에서 성립한다. 즉, q/p=13/4이고, n=2이므로 (p+q)×n=34이다.
(2pi, -7pi/4)일때 최댓값 15pi/4가 나온다고 생각했는데 제가 잘못 생각한 것이 있나요?
아, 잠시만요. 제가 거기서 꼬였나보네요. 네, -5/4×pi에서가 아니고 -7/4pi에서겠네요.
그렇군요. 이렇게 열중하여 풀어주셔서 정말 감사드립니다ㅜㅜ