타원문제..... 풀어주시면 5000원 드립니다 ㅠㅠ
문제는 다음과 같음
major축이 2a, minor축이 2b인 타원이 존재할때
(a,0)와, (0,b) 사이에 존재하는 타원위의 한점 (x1,y1)이 있다
이때 (a,0) - (x1, y) 사이의 거리와
(0,b) - (x1, y1)사이의 거리가 같은 한점
(x1, y1)을 구하라
이거 풀어주시면 5,000원 계좌이체 해드립니다..(협의 가능)
프로그래밍하는데 수학에서 막혔네요..ㅠㅠ
풀이가 가능한 분은 쪽지나 리플이나 010-육육47-2744로 답변 부탁드려요~~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
주량 기준 알려줘 13
얼굴 빨개지는거 알딸딸한거 속 뒤집어지는거 필름 끊기는거 기준이 뭐여
-
예산은 넉넉한데..
-
수능날 오열한 썰 아빠가 친척집에 다털어버렸다 개쪽팔리네~
-
으음
-
본인 딱 세병
-
근데 너무 힘들다 이제 잡니다 ㅎㅎ 밤동안 댓 달아주시면 또 구분해드릴게요
-
한문장 읽다가 졸고 한문장 읽다가 졸고 글자 다튕겨서 쉽게풀어설명해주는데도 하나도 이해안되고,,
-
이때가 명곡의 시대인데
-
연애하고싶다 3
애인사귀고싶어
-
나는 84일까 88일까 걱정했는데 결과적으로 86이었음 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ...
-
친구랑 채점 매고 넋이 나가버려서 자책을 엄청 했어요
-
남르비들만 ㅇㅈ하라고 쪽지 보내야 하니까
-
솔랭에서도 어떻게 비디디 해줘!! 일수가 있지..
-
수능 수학을 ㅈ박아서 진학사도 안 사고 단순 백분위 합으로 인서울 하위권 대학...
-
수학 77점이 2는 뜰거라고 생각했는데
-
ㅇㅈ 10
펑
-
대학가면 화석취급임? 18
군인 04인데 대학가면 신입생이 07임ㅋㅋ 내가 이성적인 감정을 느끼면 좀 이상한놈인가
-
난 닝닝이조음 4
이쁘잖아~
-
이상한쿨찐병이 2
인간관계엔 없는데 다른거에 조금 있는듯 수능 보기전엔 ‘수능 망해봐야 뭐 그냥...
-
선착 15명.
-
수학개념 0
갑자기 궁금해서 쓰는데요 시발점이나 개념원리 같은걸로 개념 땔 때 어느정도 기간안에...
-
무물보 10
고대 수리논술로 감
-
뉴런하기전에 0
뉴런-한완기 생각중인데 지금 어삼쉬사 풀고잇어요 어삼쉬사 끝나고 대가리깨지면서...
-
헤이유 3
지금 뭐해?
-
체화가 잘 더 잘 되는 느낌임 주간지 때매 그런진 모르겠는데 든든함 뭔가 걍 3모...
-
어떻게하면 내 과외생을 조금이라도 더 잘 이해시킬수있을까 1
내 수업이 너무 어렵나 근데 공부는 어렵게 하는게 맞다고 생각하는데
-
25수능 끝나고 0
오늘 학교 안 가서 좋았다 생각했음
-
변표빔맞고 죽어버림
-
25수능 끝나고 3
별생각 없엇음
-
맞팔구 7
하고 자러가야지
-
뭔가 뭔가했음 학교도 적당히 먼곳이었는데
-
교실벗어나자 울음보 터짐 진짜 존나 오열하다시피 울었음
-
설사뀨는 보아라 11
펑
-
쿠팡 보내줘 0
돈 벌어야 해...
-
04가 사수 0
4… 음
-
컴공 일기271 2
https://school.programmers.co.kr/learn/courses/...
-
지금있는친구로도 좋은데 새 친구 사귀는 모험을 왜 해야하지?라는 생각도 들구 날...
-
............. 씨발서성한은갈수있을까? 중경외시? 난 어디까지...
-
이거 2016년인가에 들었으니까 10년째 듣는 곡이네 ㄷㄷ
-
다시 돌아옴 1
ㅎㅇㅎㅇ
-
새르비니까 한번씩 적어보시죠 아침에 지울겁니다 저는 중학교때가 좀 후회되네요 그때...
-
메가패스지만 댓글에 따라 기꺼이 신택스 할 의향 있음
-
못봤대서 다시 12
ㅋ
-
스타일만 5
여름에
-
검색창엔 안 나오네…
-
아까까지.계속 배아파서 못자다가 이제 자야겠네 빠잉
-
ㅇㅇ
-
잡시다
-
다이어트 1일차 0
시작합니다
어라 이건 그냥
(a - x_1 )^2 +(0-y_1)^2 = (0-x_1 )^2 + (b-y_1 )^2 이랑
x_1 ^2 /a^2 + y_1 ^2 /b^2 =1
연립해서 풀면 되는 거 아닌가요?
첫식에서 2ax_1 = 2by_1 +a^2 -b^2 이므로 두번째식에 대입하면
b^2 (2by_1 +a^2 -b^2 )^2 + 4a^4 y_1 ^2 = 4a^4 b^2
--> 4(a^4 +b^4 ) y_1 ^2 + 4b^3 (a^2 -b^2 ) y_1 +b^2 (a^2 -b^2 )^2 -4a^4 b^2 =0
--> y_1 = [ -2b^3 (a^2 -b^2 ) + 루트{4b^6 (a^2 -b^2 )^2 +4(a^4 +b^4) ( b^2 (a^2 -b^2 )^2 -4a^4 b^2 )} ] / 4(a^4 +b^4)
--> y_1 = [ a^2 b 루트{3a^4 +2a^2 b^2 + 3b^4 } -b^3 (a^2 -b^2 ) ] / 2(a^4 +b^4)
x_1 = [ ab^2 루트{3a^4 +2a^2 b^2 + 3b^4 } +a^3 (a^2 -b^2 ) ] / 2(a^4 +b^4)
답만 필요하신데 괜히 다 적었나..ㅎㅎ
설마 타원의 호를 따라서 이동할 때의 길이를 말씀하시는 것은 아니겠죠.. 그건 아마 일반적으로 타원적분의 형태가 돼서 딱 떨어지는 식이 잘 안 나올 가능성이 농후하나, 이 문제의 경우는 타원곡선 위의 연산을 이용하여 딱 떨어지는 값이 나올 수도 있을 것 같습니다.