무브
오르비
아톰
내 태그 설정
먼지바람 [412960] · MS 2012 · 쪽지
게시글 주소: https://19pass.orbi.kr/0003237359
처음으로 올려봅니다. 유형평가나 난이도 평가도 부탁드립니다. ^^
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
쪽지 보내기
알림
스크랩
신고
불금 재미난 문제 투척 감사요~ 근데 함수가 -n<=x<=n 에서 정의가 되어야 하는데 x=0, 1에서 정의가 안 되는 듯 합니다. 아마 f_n 을 왠지 x=0에서 연속이 되게 정의하시려고 했다고 믿고 풀어보면.. (x=1에서의 정보도 필요하지만) f_n (0)=0 ㄱ. f_1 (0)=0이고, x=0에서 극댓값 1개이므로 참. 01 극한은 -무한대. ㄴ. n>=2에 대해서는 f_n이 x>=0에서 함숫값 0부터 출발해서 쭉 감소하다가 x=1의 좌측에서 -무한대로 감소. x=1의 우측에서 +무한대에서 시작해서 쭉 감소해서 x=n까지 쭉 감소해서 0이 됌. a_1 = -2, a_2 = 3, a_3 = 2 , ... , a_n = 2. 따라서 참. ㄷ. x=+-1에서의 함숫값을 어떻게 정의하느냐에 달리긴 했지만, 맞는 것으로 판단됌.. 참. 미분해서 개형 그려보고 기울기가 양인지 음인지 판단하려면 계산 좀 해야 해서 난이도는 어려운 4점이 아닐까 싶습니다만.. 근데 ㄷ이 오히려 쉬운 것 같네요ㅎ 이거는 미분 안 하고 식만 봐도 나오니까요.
역시 syzy님 ㅋㅋ 열정적이심 ㅋㅎ
아 금요일인데 오늘은 힘이 좀 남아도네요..ㅎㅎ 어라 제가 쓴 글 다시 보다 보니 a_1 = 2인데 -부호 붙여놨네..ㅋ
아... 그러네요. -n에서 n까지 정의된..........이라고 써놓고 정작 x=0. 1,-1 에 대해선 언급이 없었네요. 정신을 어디다...ㅠㅠ 음.... x=0일때 함수를 연속으로 두려했던것 맞구요. 1과 -1일때는 그냥 빈채로 두려 했는데.... 정작 아무런 언급도 없었으니.... syzy님 지적해주셔서 고맙습니다.
2026 수능D - 301
독서 8주특강 진행합니다!
수학 안정적 1등급 맞기
25수학 물리학1 화학1 만점
수능 영어 1등급 영어과외 & 카이스트 수학과외
수학 및 화학 1등급 과외!
1:1 맞춤과외 내신/수능대비
불금 재미난 문제 투척 감사요~ 근데 함수가 -n<=x<=n 에서 정의가 되어야 하는데 x=0, 1에서 정의가 안 되는 듯 합니다.
아마 f_n 을 왠지 x=0에서 연속이 되게 정의하시려고 했다고 믿고 풀어보면.. (x=1에서의 정보도 필요하지만)
f_n (0)=0
ㄱ. f_1 (0)=0이고, x=0에서 극댓값 1개이므로 참. 01 극한은 -무한대.
ㄴ. n>=2에 대해서는 f_n이 x>=0에서 함숫값 0부터 출발해서 쭉 감소하다가 x=1의 좌측에서 -무한대로 감소. x=1의 우측에서 +무한대에서 시작해서 쭉 감소해서 x=n까지 쭉 감소해서 0이 됌. a_1 = -2, a_2 = 3, a_3 = 2 , ... , a_n = 2. 따라서 참.
ㄷ. x=+-1에서의 함숫값을 어떻게 정의하느냐에 달리긴 했지만, 맞는 것으로 판단됌.. 참.
미분해서 개형 그려보고 기울기가 양인지 음인지 판단하려면 계산 좀 해야 해서 난이도는 어려운 4점이 아닐까 싶습니다만.. 근데 ㄷ이 오히려 쉬운 것 같네요ㅎ 이거는 미분 안 하고 식만 봐도 나오니까요.
역시 syzy님 ㅋㅋ 열정적이심 ㅋㅎ
아 금요일인데 오늘은 힘이 좀 남아도네요..ㅎㅎ 어라 제가 쓴 글 다시 보다 보니 a_1 = 2인데 -부호 붙여놨네..ㅋ
아... 그러네요. -n에서 n까지 정의된..........이라고 써놓고 정작 x=0. 1,-1 에 대해선 언급이 없었네요. 정신을 어디다...ㅠㅠ
음.... x=0일때 함수를 연속으로 두려했던것 맞구요. 1과 -1일때는 그냥 빈채로 두려 했는데.... 정작 아무런 언급도 없었으니.... syzy님 지적해주셔서 고맙습니다.