자작문제
아쉽게도 제가 답을 적어놓은 종이를 잃어버려서...풀이를 구합니다^^;
형식은 수능문제지만 수능에 나올 만한 문제는 아닙니다.(한 문제에 너무 많은 걸 물어보므로)
고등학교때 경우의 수 구하는 문제가 있었는데 그걸 약간 일반화시켜 수열화해서 만들었던 걸로 기억합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
체화가 잘 더 잘 되는 느낌임 주간지 때매 그런진 모르겠는데 든든함 뭔가 걍 3모...
-
어떻게하면 내 과외생을 조금이라도 더 잘 이해시킬수있을까 1
내 수업이 너무 어렵나 근데 공부는 어렵게 하는게 맞다고 생각하는데
-
25수능 끝나고 0
오늘 학교 안 가서 좋았다 생각했음
-
변표빔맞고 죽어버림
-
25수능 끝나고 3
별생각 없엇음
-
맞팔구 7
하고 자러가야지
-
뭔가 뭔가했음 학교도 적당히 먼곳이었는데
-
교실벗어나자 울음보 터짐 진짜 존나 오열하다시피 울었음
-
설사뀨는 보아라 11
펑
-
쿠팡 보내줘 0
돈 벌어야 해...
-
잔머리 <<<<< 솔직히 안좋아하는 남자 없음 똥머리나 포니테일할때 뒷목에 있는...
-
04가 사수 0
4… 음
-
컴공 일기271 2
https://school.programmers.co.kr/learn/courses/...
-
지금있는친구로도 좋은데 새 친구 사귀는 모험을 왜 해야하지?라는 생각도 들구 날...
-
............. 씨발서성한은갈수있을까? 중경외시? 난 어디까지...
-
이거 2016년인가에 들었으니까 10년째 듣는 곡이네 ㄷㄷ
-
다시 돌아옴 1
ㅎㅇㅎㅇ
-
새르비니까 한번씩 적어보시죠 아침에 지울겁니다 저는 중학교때가 좀 후회되네요 그때...
-
메가패스지만 댓글에 따라 기꺼이 신택스 할 의향 있음
-
못봤대서 다시 12
ㅋ
-
스타일만 5
여름에
-
검색창엔 안 나오네…
-
아까까지.계속 배아파서 못자다가 이제 자야겠네 빠잉
-
ㅇㅇ
-
잡시다
-
다이어트 1일차 0
시작합니다
-
살좀빼고 음 일단 자자 졸리네
-
오노추 0
비트가 맛깔나요
-
지금 말고 사람 많은 오후 때요
-
나만 혼자 외롭게 있다는 생각들면 숨이 잘 안 쉬어짐
-
난 ㄹㅇ 잠이 안오더라 ㅋㅋㅋㅋㅋㅋ 울진않았지만 뭐,,
-
30명은 돌겄죠?
-
10키로 찌면서 이목구비에 살찜뇨.. 이제 마름에서 그냥 보통 정도 된거같은ㄷㅔ...
-
ㅇㅇ…..
-
자식때문도 있지만 자기자신을 위해서도 큰것같음 나라상태는 둘째치고 19-30까진...
-
살면서 딱히 4
누구 닮았다는걸 못들어봄 들어보고 싶은대
-
재수 삼수실패해서 망하면 보통 다들 정시발표까지 뭐하시나요? 7
재수삼수실패햇는데 새벽까지 넷플릭스보는가 어케생각함?
-
오르비나 하고있네ㅋㅋ
-
ㅇㅈ 바겐세일 6
그냥 잘나온 사진들 다뿌림 히히
-
근데 친구든 연애든 23
친구 만드는 것 혹은 연애하기에 지나치게 집착하면 오히려 생길 인연도 안 생기는 듯...
-
내일 아침에 일어나야하지 않나요?
-
아닌데?? 나한텐 오르비 친구들 있는데?? 나에겐 소중한 친구들임
-
햄부기 4
-
선택좀 2
경희대 정디플, 기계 디스플레이쪽 요즘 안좋다던데
-
이거 먹을려고 열심히 일 했어요
-
2시 쯤이면 ㅇㅈ해도 되려나
-
얼굴은 앵간만하는데 키크고 개잘먹게 생김...... 교복입고 엘베탔을때 어르신들한테...
-
ㅇㅈ 18
포함과 배제의 원리에서 a_n = 3^n - 2^n - 2^n - 2^n +1^n +1^n +1^n = 3^n - 3* 2^n +3
b_n = 3*2^n-1 (첫자리는 3가지, 그 다음자리부터는 항상 2가지 가능성)
c_n = b_n - 6 = 3*2^n-1 -6 (단, n>=2일때) (b_n에 해당하는 것들 중, 맨 앞 두 수(예를 들어 1,2라고 합시다)가 1 2 1 2 1 2 ... 이런 식으로 반복되는 유형만 제거하면 되는데, 맨 앞 두 수가 결정되는 방법의 수는 6가지이므로)
d_n 은 대충 생각해도 맨 마지막 자리가 1,2,3 중 약 1/3씩 분배될 것이라 알 수 있으므로(맨 앞자리도), d_n /c_n 의 극한은 1/3이 맞을 것입니다. 하지만 직접 d_n을 계산해봅시다. c_n 중에서 맨 앞자리=맨 뒷자리 인 것의 개수를 e_n 이라 하면,
1.. c_n = d_n +e_n (이 식은 필요는 없지만..)
2.. d_n+1 = d_n +2e_n
3.. e_n+1 = d_n
입니다. 2,3번 연립 -> d_n+1 =d_n +2d_n-1. 풀면(특성근 등등) d_n = u* 2^n + v*(-1)^n (u,v는 상수)
d_2 =0 , d_3 =6 을 이용하여 u,v를 계산하면, u=1/2 , v=-2. 따라서 d_n = 2^n-1 +2(-1)^n-1. 따라서 극한은 1/3.
풀이를 적은 종이를 잃어버려서.. 라는 멘트는 누구의 멘트와 비슷한데..ㅎㅎ
와우! 정말 잘 푸시네요. 이 문제는 사실 d_n을 구하는게 핵심인데, 이렇게도 풀 수 있겠끔 보기를 저렇게 만들었던 것 같습니다. 그래도 a_n~c_n은 굉장히 쉽게 구하셨네요ㅎ 라고 쓰는 중에 dn까지 구하셨네요! 대단하십니다ㅎ