수학에서추론'능력'
2021학년도대학수학능력시험학습방법안내 (2).pdf
2021학년도대학수학능력시험이렇게준비하세요 (3).pdf
2021학년도대학수학능력시험학습방법안내
2021학년도대학수학능력시험이렇게준비하세요
에서 추론에 대한 내용을 가져왔습니다.
평가원은 추론'능력'을 평가한다고 나와있습니다.
그 능력 중 발견적 추론에 대해서 얘기해 보겠습니다.
보통 발견적 추론=나열 이라고 생각합니다.
수열단원에서만 쓰이는 스킬 정도로 여겨지는데, 미적분, 확통, 기하 전 단원에서 쓰이는
보편적인 생각입니다.
초기 수능입니다.
초기 수능이 수능의 본래 목적과 밀접한 관련이 있어, 설명하기에 편합니다.
만약 이문제가 시험에 나온다면 어떻게 하실겁니까?
대부분 학생들은 어떤 유형의 문제인가 판단할 겁니다.
즉, 문제가 묻고있는 것이 무엇인지 파악하는 것이 아니라,
문제가 어느 유형인지를 '분류' 하려고 합니다.
문제 해결 방법은?
그냥 해보시면 됩니다.
가장 간단한 경우의 길을 하나 발견적으로 해본 다음에,
즉, 상황을 축소해본 다음에
조금 더 확장하면 (일반화 까지)
우회전 2 3 4
좌회전 1 2 3
아!
(우회전)=(좌회전)+1
이라는 일반화까지 할 수 있습니다.
틀려서 만약 해설강의를 들으신다면,
(우회전)=(좌회전)+1 이라는 결론을 먼저 안 다음에
그게 맞는지 확인하는 과정으로 공부하게 됩니다.
즉, 추론 -> 결론 이 방향이 아니라,
결론 -> 이해 이 방향으로 기출문제를 공부하게 됩니다.
머리에는 아는게 많아지지만, 추론능력 자체를 올릴 수 있는 기회는 없어질 겁니다.
<절댓값 함수의 미분가능성>
전형적인 조건이기 때문에 대부분 학생들이 미리 알고 있습니다.
f(a)=0 이면 f'(a)=0
그럼 이 문제의 출제의도는 이 명제를 알고 있어야 하나요?
물론, 연역적인 방법으로 이 조건을 해석 할 수 있습니다만,
사차함수가 아닌 이차함수의 그래프를 통해 (상황의 축소)
(나) 조건을 해석한다면,
y=f(1) 이라는 직선을 이용하여
만날때 접해야 한다는 사실을 추론할 수 있습니다.
물론 여기서 끝이 아나라, 미분계수의 정의를 통해 일반화까지 하신다면, 완벽하고요
시험장에서 생소한 모든 문제의 조건을 연역적으로 엄밀하게 전개하기 힘들 수 있습니다.
야매 아니냐고요??
추론능력 자체에 초점을 맞추기 않고 사후적 지식만 정리하신다면,
(아얘 하지 말라는것 ㄴㄴ)
국어 기출분석을 독해력이 아닌 배경지식만 정리하는 꼴이라고 생각합니다.
+내일 수열 파트 EBS 자료 드립니다
좋아요와 팔로우 하시면 내일 바로 받으실 수 있습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
시대 단과 재종 0
현정훈 물리2 단과 특강으로 열린거 듣고 있는데, 시대인재 재종 3월에 들어가면...
-
아 뭐냐 2
이모님이 나 어디 나가면 학원 가냐고 물어보시네 하도 수능을 쳐 보니까 실모치우느라...
-
뉴런 0
현역 고3이고 독학재수 다니고 잇습니다. 고2 모고 낮 2인데 뉴런 수 원 수 투,...
-
약대 1
진지하게 이대약대 가고싶은데 반수랑 편입중에 뭐가 나을까요 올해 연논 붙어서...
-
물리 유기한 상태인데 이대로 복학하면 다시 학점 2.6인데
-
궁금 미인증하고연막치면안되는건가
-
예전에도 옯창이고 지금도 옯창인 사람 (전에도 지금도 네임드) 말투 싹 바꾸니깐...
-
문학만 들을겁니다
-
맞팔구함 2
오늘은밤새야지
-
둘다 미인증은 좀…
-
그냥 너무 재미가 없음ㅠㅠ 공부를 재미로 하는 사람이 어디있겠냐만은 걍 하기가...
-
어쩐지 서강대가 안되는데 연대가 되더라
-
양자현상을 확률로 묘사한다고 해서 본질자체가 확률인건 아님
-
남녀성비가 좀 적절했었음 지금은 거의 다 남자라 그 음양의 조화가 안맞음
-
서울대 가고싶다 0
원랜 연고대가 꿈의 학교였는데 막상 연고대 안정이 뜨니까 서울대 원서 안 쓴 게...
-
충원률 한바퀴 도는 과인데 추합 기대해도 되겠죠? 이제 순위도 별로 안변하던데
-
지방약 보통 얼마나 되여
-
본질은 역시 교과서개념인가........ ㅈㄴ 허수같지만 화려한 스킬 기대했는데...
-
존재하는것은 원인을 가진다.. 진성난수는 존재한다 진성난수는 원인을 가진다 원인을...
-
기도티콘 2
기도내용 인생안망하기 밥먹고살기 가족정상적부양 은혜갚기 인생ㅅㅂ 어떻게든 되겟지...
-
스나가 절반이나 될린 없고
-
제곧내
-
수험때도 이랬는데 지금도 이럴줄이야
-
전화기, 바이오 쪽으로 물1,2, 화1,2 공부 어느정도 필요? 0
ㅈㄱㄴ 1학년 이후에 전화기나 바이오 쪽으로 전과/복전 생각 중인데 물화 1 2...
-
얼마나있을진모르겠지만 빈둥거리는 할거없는 존잘분들은 수능끝나면 여고앞에서 붕어빵이나...
-
출처 - 불펌
-
태지님 어캐 됐을까 17
이번에 성불하실거 같던데
-
접수 전에 미인증표본들한테나 시키지 ㅋㅋㅋㅋㅋㅋ 진짜 웃기네 앱만 쓰는데 하루에 한벜씩 시키네 ㅋㅋ
-
생2 유기 2
굿
-
내친챙길걸 0
내신챙길걸내신챙길걸내신챙길걸내신챙길걸내신챙길걸내신챙길걸내신챙길걸내신챙길걸내신챙길걸내신...
-
참고로 대학 미적분학 (벡칼 전까지는) 적분 기법과 급수가 고비입니다 1
적분 기법은 계산이 토나올 정도로 많아서 (사실 내용은 치환, 부분, 부분분수...
-
인생망했네 7
배고파
-
인설의 걸고 반수하신건 아는데 결국 가셨나요?
-
안녕하세요 22
아찐 튀긴미쿠에요
-
잠적함?
-
어 일단 룰러 선수가 LPL 갔다오더니 더 잘해진 느낌을 받았던것 같고요 그리고...
-
많이 해롭나봐요......... 단약할 날은 영원히 안올듯 곧 아버지 은퇴하시면...
-
대학 다닐 때도 생각해 보면... 또래 여학우들은 "카레돈까스 먹고 싶당 ㅎ" 이런...
-
대학로 놀기 좋음? 서울대생들도 많음?
-
프사 어떰? 0
ㅋㅋ
-
올해 새터가면 11
05좀 많앗으면좋겠당
-
성대 다음으로 빨리 나오는 대학들 어딘가요? 그리고 빨리 나온다면 언제쯤 나오나요?...
-
제1원인 vs 무한원인 뭐가 답일까요
-
요즘 드는 생각이 13
커서 뭐해먹고살지밖에 없음 막막하다 그냥
-
아씨뭐지 사기당하고있는거야 내가맞는거야
-
삼수말림 1
점공추이보니까 6칸 최초합쓴거말고는 암것도못붙을거같아서...
-
중소기업가면 되죠...
-
세상사람들이 행복한거,잘풀린거임 ㅡ아?
-
우주 최강 과탐러, 이곳에 잠들다. 24.05.01~25.01.09
2022 수능 예시에서 가져온줄 알았어요
2021 임니다ㅎㅎ
수능 1차에서 빵 터졌네요
그냥 해보면 되는데 그 출발이 쉽지않네요..ㅋㅋㅋ 자꾸 뭔가 연역적인 것을 찾으려해서...앞으론 뭐지 싶으면 그냥 해볼게요. 좋은 칼럼 감사합니당 ㅎ
아 근데 선생님 미지수 설정에 관해서도 칼럼 써주실 수 있나요??ㅜ 문제풀 때 진짜 할 게 없을 때, 답 또는 답을 구할 때 필요한 값을 미지수로 두고 조건 사용하는데 넘 근거없이 미지수를 쓰는 거 같아유.. 그리고 미지수를 세울 때 미지수를 어떻게 하면 줄일 수 있을지에대한 부담때문에 선뜻 미지수를 잘 못세우겠는데 미지수는 어떨 때 써야하는지? 미지수 세울 때의 마음가짐 등등 이런 거에 대한 칼럼 부탁드려도 될까요??
미지수 자체가 정보처리하는 방법중 하나입니다. 미지수랑 정보의 양의 상관관계에 대해서 다음에 기회되면 얘기하겠습니다. 작년 가형 30번이 그렇죠
오 감사합니다!!
수학에는 문외한이지만, 제 수험생활 경험을 떠올리면 정말 좋은 글입니다 ㅎㅎㅎ 저도 수학 6등급에서 1등급으로 오르기까지 '일단 해보기'가 가장 도움이 많이 되었던 것 같아요. 특히 문과 중위권 학생들은 쫄지 말고 시키는 대로 해 보면 답이 쉽게 나오는 경험을 많이 해 보면 좋은 것 같아용
맞습니다 선생님ㅎㅎ 저는 수험생때 문학을 못했어서 3등급의 벽을 못넘었습니다.ㅜㅜ 피램이 제가 수험생활때 나왔다면 어땠을까 라는 생각을 합니다.