수리가형 고난도 문제 집중공략 자료
심화특강 새로운 함수의 정의.pdf
수리가형 고난도 문제 집중공략 자료
"새로운 함수를 정의"하는 문제를 집중적으로 공략하는 자료입니다.
나중에 한완수 적분과통계 원고로 들어갈 부분입니다~
기출문제도 많고 제가 만든 자작문제도 많아요. 25페이지 정도 되고 총32문제 있습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
거북아거북아 결과를 내어라 내놓지 않으면 구워서 먹으리
-
스카 자리 추천 21
1번이 좋을까요 2번이 좋을까요
-
진짜야
-
그치만 아무도 나에게 과외를 받고 싶어하지 않는 걸
-
얼버기 4
기상완료
-
무뽑으로 코하네 월링 ㅅㅅ
-
눈 부음 + 샤워 못해서 꾀죄죄해서 집에만잇엇는데 가서 실모나 풀까요
-
171130 (나) 12
심심해서 얘도 빠르게 풀어봄...
-
좋아하는아티스트라이브직관이있었는데 티케팅 실패했어서 안죽었음
-
수분감 자이 2
예비 고3이고, 내신 챙기면서 정시도 챙길건데 수분감 자이 중에 뭐가 나은가요?...
-
특히 선정리 이게 그냥 미쳣음 미친 동선이다 진짜
-
그 특유의 감성이 너무 좋아용..!!
-
친구꺼 빌림 엄마한테 담배피는거 걸리면 안되서 증거를 남기면안되거든
-
[호드] : 관리자 님은, 스스로를 마주하는데 성공하셨나요? [호드] : 이 곳에서...
-
진짜모름 이거 어케함요
-
효과는 미미했다
-
새르비하는 사람들이 많아서인지 새르비가 재밌구만
-
사실 헛된 희망이 아니라 그냥 희망이었으면 좋겠는데 뭔가 그런 낭만과 이상을...
-
궁금
-
전에 기립성 저혈압땜에 갑자기 정신줄 놓아서 쓰러진적 많았는대 의외로 나쁘지는 않았음
-
비문학 선지 읽으면서 이해를 하고 전반적인 지문 이해가 된 상태에서 선지를 보고...
-
죽으면그만이야
-
2013년 기억이 어떻게 사진보니까 떠오르지
-
무물보 5
으앙
-
별로 안춥네 1
딱좋노
-
ㄱㄱ
-
이제 자러감...
-
당신은 행복하다 행복해질 것이다
-
어느 한 쪽으로 쏠려있으면 그 세계에서 못빠져나오는듯
-
잘있어 10
그립진않을거야
-
떠나십쇼 0
퍼덕퍼덕
-
주책이야 진짜
-
오늘부터 난 20살
-
저부터 함 전화기 (그 다음 댓글에 이어서 ㄱ)
-
안녕하세요 4
-
정치 성향 ㅇㅈ 0
국사 배우면서 난 극우라고 생각했는데 거의 반반이네 보수에 전통이나 종교가 들어가서 그런가
-
내가 명령한다 3
자라
-
7분전!!
-
가즈아
-
전화할사람 구함 5
심심하네요..
-
갑자기 닉변을
-
정치성향 인증 0
어떤가요 경제 선택하는 이유가 나오는 듯 ㅋㅋ
-
덕코 사용법 3
오르비 내에서의 레어사진 사는 그런 것도 있는데 사실 편의점에서 돈으로 교환할 수...
-
조건 해석하면n=1 ) f(1)=f(1)*f(2)n≥2 )...
-
요즘 내가 잠이 없는건가 5시간도 안잠
-
자기 전에 이미지 적어드림 111
필터링 없어서 상처받을 수 있음
-
먹으면 안 돼려나요..?? 일단 지금 전자레인지로 데피고 있어용..!!
-
라는 생각이 들면 공부가 덜된거임
-
슬슬 잘 때인가 6
일정잡은 내 잘못이다.. ㅂ.ㅂ
-
ㅇㅈ 9
조회수를 테스트
해원님 기벡 원고 넘기셧다고하는데 정확한 출판일자 언젠가요 ? 목이 빠지겟네요
그리고 이번엔 오타 없는거 자신있으신가요 ?
네 ㅎㅎ 직접 확인하셔서 오타없다고 후기좀올려주세요 ㅋㅋㅋㅋ
(현금 50만원정도를 투자해서 검토했습니다. 위 자료받아보면 검토진이 3배가량늘어났죠 ㅠ)
출판일자는 저도몰라요 ㅠㅠ 원고 주고나면 저랑은 별로 상관없이 돌아가서
오르비에물어보세요..
네 ㅎㅎ 올라오자 마자 사서 꼭 후기올릴께요
잘볼게여~^.^
열공하세요~~
저도 기벡언제쯤 나오는지 좀...
오르비에 문의를... 5월초라고 예상하고있습니다 저는
수고하셨어요 ㅋㅋ
다운받아봅니다ㅎ
윗글과는 상관 없지만..
뭐 하나 물어볼게요..
제 꿈이 고등학교 수학 선생님이 되는 것인데요..
수학을 좋아는 하지만 아직 그렇게 잘하지는 못해요..
근데 그럼에도 불구하고 제가 수학선생님이 될 수 있을까요??
이해원님 프로필을 보니 정말 수학적인 머리가 좋아 보여서 말이죠..
.. 수학도 노력하면 늘기야 늘겠지만... 수리영역 실력 말고
수학이라는 학문도 잘 공부 할 수 있을까요?.
제가 원래 학습동에 들어올 나이는 아닙니다만; 심심해서 여기 들어왔다가 우연히 님 댓글읽고 답글답니다.
저는 수학전공이 아니지만 수학과 과목을 많이 들은 경험이 있고 어느정도 수학과 관련된 전공을 하고 있습니다. 순수 수학 전공을 하시는 분하곤 의견이 약간 다를수 있어요. 제 생각은 수리 영역은 계산의 정확도, 순발력 등등의 요소가 강해서 수학을 잘 하는 것과는 조금 다릅니다. 수학 경시대회가 오히려 대학와서 배우는 수학과 비슷하지요. 하지만 역시나 수리 영역 문제를 잘 푸는 애들이 수학과 전공에서 더 좋은 성적을 거두더라고요.
수학과에서 학생들끼리 차이가 서서히 벌어지기 시작하는 해석학 같은 과목을 보면 두뇌적으로 타고난 걸 무시할 수 없습니다.(뭐..이건 타전공도 마찬가지에요.) 하지만 그래도 남들보다 더 노력을 하고 끈질기게 붙잡아서 극복을 하는 경우도 많이 봤어요.
고등학교 수학 선생님이라면 수학 교육과에서 듣는 수학과 전공만 들으시면 될겁니다. 그 정도는 스스로 노력만 하면 충분히 따라가실 수 있을거에요. 너무 걱정 마시고 꼭 원하시는 꿈 이루시길 바랍니다.
감사합니당^^
적분과 통계는 언제쯤 나와요??
기출은 안보고 그냥 26번이 복잡해 보여서 풀어봤는데,
ㄴ항목에서 g(4) = 0 이고, lim_{t -> 4} g(t) = 1 이 되어 거짓일 듯하네요.
그리고 31번은 문제에서 int_{from 0 to x} f(x) dx 를 int_{from 0 to x} f(t) dt 로 쓰는 것이 좋을 듯하고요.
저도 같은 생각이에요 26번에서 x=4는 함수의 변곡점인데... 거기서는 p(x)는 모든 점에서 미분가능해요
네넹 집에가면 확인해보고 수정할게요.. 지금은 고향에 내려와서 ㅋㅋ
해원찡 적통 책좀 빨리내주셈ㅋㅋㅋ 현기증 난단 말이에요
진짜 좋아요 완전 이해원님 팬이에여 대학가면 따라다닐거예여
ㅋㅋㅋㅋㅋ 감사합니다
기다리고 있겠습니다.
해설 없나요..... 해설참고 가 꽤나 있네요
감사합니다 ㅎㅎ