[이동훈 기출] 6월 모평 수학 가형, 나형 해설지 (상세한 해설)
2019(6월)_수학가형_해설지_이동훈기출.pdf
2019(6월)_수학나형_해설지_이동훈기출.pdf
2019 이동훈 기출 교육청/사관/경찰 이 출시되었습니다. (가형, 나형)
2019 이동훈 기출 atom 책페이지
안녕하세요~
이동훈 기출문제집의 저자 이동훈입니다. :)
2019 학년도 6 월 모평 수학 가형, 나형 해설지 입니다.
이 글에 첨부된 PDF 파일을 다운로드 받으세요.
감사합니다 !
이동훈
+ 6월 26일 오후 1시부터 적용
나형 29번의 [풀이1]을 [풀이2]로 보내고, 기존의 [풀이2]를 교체하였습니다.
기존의 [풀이2]를 새로운 풀이로 교체한 이유는 답은 구할 수 있지만,
필요충분조건에 딱 들어맞는 풀이가 아니기 때문입니다.
+
6월 모평 해설지 작업을 마감하고 든 생각은
(1) 결국 수능/평가원 신문항은 기출의 재구성이며,
(2) 생소한 문제일 수록 교과서의 기본개념을 적용하면 된다.
라는 원칙이 여전히 지켜지고 있다라는 점입니다.
가형 21번 : 루트(|f(x)-t|)의 미분가능성에 대한 판단
나형 29번 : 함수와 역함수의 교점이 y=-x+k 위에 있는 경우
정도가 시험장에서 생소하게 느껴졌을 텐데요.
가형 21번의 경우에는 미분가능성을 판단하라고 하였으니,
교과서의 미분계수의 정의를 떠올리면 풀 수 있고,
나형 29번의 경우에는 교과서 본문의 그림에서
유리함수 y=1/x와 그 역함수의 그래프가
기울기가 -1인 직선 위에서 만남을 관찰한 경험을 떠올리면
풀 수 있었습니다.
가형 28번, 30번, 나형 21번, 28번은 수능/평가원 기출에서
(숫자만 다르고) 동일한 풀이과정을 가진 문제를 찾을 수 있고,
나형 30번은 조건 (가)에서 합(수열의합) -> 차(일반항)
을 떠올릴 수 있었다면, 그 이후의 풀이는 인수정리를
이용하여 다항함수의 방정식을 유도하면 되었습니다.
전반적으로 고전적인 스타일을 유지한 시험이라는 생각입니다. :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내 mbti 예측 ㄱㄱ 15
내일 다시 검사해볼거니까 미리 예측해주세오
-
이런 건 내 열등감일 가능성이 높냐 아니면 뇌피셜레이더가 작동해서 거를 사람 거르는거임?
-
고인물들은 안 봐도 됨 화2가 처음이거나 미숙하면 농도 관련된 문제를 풀 때 용질을...
-
대신 틀 인정하는 거임
-
대한민국 중앙지검 부장검사 대유빈
-
야수의심장으로 한 -30퍼까진 괜찮다고봄
-
저는 MBTI 뭐같나요 17
실제로들어본말)싸가지없어서 외동인 줄 알았다
-
너무 병신같나..
-
무물보 17
해주세요
-
이거 코어랑 모어 합치니깐 1000문제인대ㅈ버그임?
-
어 방금 생각남 ㄹㅇ내머릿속애서나가.
-
확통이와 미적이의 공통 점수차가 상대적으로 적어서 그런거죠??
-
옯뉴비임
-
아주 기부니 좋음 Definition 말하는거임
-
치질걸림 4
치질걸렸는데솔직히대학붙여주자 삼일째잠못자는중
-
옯뉴비에요
-
ㄹㅇ왜케 없지 진짜 주변에서도 본 적 없음
-
멋짐
-
아무거나라도..! 정 인되면 제가 해드릴 수도 있구요
-
아도신곡 2
좋네요
-
소수과보단 대형과가 타격이 큰건가오
-
국어 90 수학 85 영어 66 나왔어요 수학 3점짜리 실수해서 틀리고 29번...
-
https://nz.sa/xAPkS
-
올해 ㅅㄷㅇㅈ 모집 중앙대까지 ㅇㅇ
-
그래서 cc감점 16
2배수 어쩌고 차이 안나면 설대식5점이라는 뜻임? ㅈㄴ 직관적이지 않네 이해가 안 됨
-
옯스타 홍보안하겠습니다 13
네
-
한 5년 잇네
-
남의 인생한탄글에 자기 경험이나 생각 적는 수준을 벗어나서 “고민되는 순간...
-
떨어지면 걍 죽지 뭐
-
큐브 2
요즘 재미들려서 열심히 하는데 별점 테러 당하고 급 기분 나빠짐 풀고있었는데 먼저...
-
노래방 마렵다 1
같이 갈 친구가 없네 아..
-
50만원짜리 MRI는 과잉진료라고 정형외과 ㅈㄴ 까대면서 80만원짜리 '척추 강화...
-
깨달음을 2
못 얻엇다
-
요즘 뭔가 분위기가 어수선해서 골고루 못하네요
-
제발보내달란거임
-
25수능 언매 확통 정법 사문 22333 나왔습니다. 20, 21, 27, 28...
-
심심함..
-
저기서 살짝 해피로 가면 정신병자가 죽으려했다가 혼수상태일때 영혼이 잠시...
-
전 1300박았습니다 다들제발 tsll박으세요 ㅈㅂㅈㅂㅈㅂ
-
님들 다 기만임 1
생존햇잖음
-
조건없이 그냥그런경험을해보고싶어 오래된생각이야
-
이제 LLM도 3
중국한테 따이네 한국은 애초에 답 없었고 미국이랑 중국 양강구도인데 미국 발등에 불...
-
하하하 이제 평화롭군
-
일로 오렴
-
5만원만 해보라는 옵붕이의 말에 홀라당 넘어감
-
디시펌
-
천재적인 경우 많이 봤음
-
모르면 외워 0
흐흐
-
ㅈㄱㄴ
언제나 감사합니다 저자님